

$$
R 39629
$$

-

$$
\therefore \quad \therefore \quad
$$

$$
x
$$

Digitized by the Internet Archive in 2015

PHYSICS

FOR

STUDENTS OF MEDICINE

BI

ALFRED DANTELL, M.A., LL.B., D.Sc., F.R.S.E,
ADVOCATE AND BARRISTER-AT•LAW; EXAMENER IN PHYSICS TO
TLE ROYAL COLLEGE WF PISSICIANS OF EDINBURGH ; FORMERLY LECTLREL ON PEISICS IN TEE SCHOOL OF MEDICINE, EDINUURGI ; AUTIIOR OF
'A TEXT-BOOK OF THE PRINCIPLES OF PHYSICS."

aldunan
MACMILLAN AND CO. LTh.
NEW YOIRK: MA'MIJLAN \& (U.
1896

PHYSICS

FOR
students of medicine

PHYSICS

FOR

STUDENTS OF MEDICINE

BY

ALFRED DANIELL, M.A., LL.B., D.Sc., F.R.S.E.,

ADVOCATH AND BARRISTER-AT-LAW: ENAMINER IN PUYSICS 'IO
THE ROYAL COLLEGE OF PIIYSICIANS OF EDINBURGII ; FORMERLY LECTLRER ON PIYSICS IN T日E SCHOOL OF MEDICINE, EDINBURCIF AUTHOR OF
'A TEXT-BOOK OF THE PRINCIPLES OF PIISICS.'

至0ntin

MACMILLAN AND CO. LT1.
NEW YORK: MAMMLLAN © CO.
1896

PREFACE

Until within a recent period the Student of Medicine was launched into his professional studies and floated onwards towards his professional degree or rualifications without his receiving, so far as the regulations of the General Medical Council were concerned, any explicit direction that he must of necessity turn his attention to the sulbject of Physics. The consequence of this was that he mostly came unprepared to the consideration of matters involving in many cases the application of physical principles; and this he did to the embarrassment both of himself and of his teachers.

During the continuance of this state of things much was said as to the absolute necessity of a knowledge of Plysics on the part of the Student of Merlicine; and considerable discussion was evoked. In this I took some part; and I did some pioneering work between 1878 and 1883 by delivering courses of lectures in the School of Medicine, Edinburgh, on "Medical Physics."

Since then it has been gratifying to find that, under their new regulations which came into force in 1892 , the General Medical Council ordained that the study of Plysics was thenceforward to form part of the extended course of professional study.

Under the new order of things, it was suggested to me, by members of the medical profession to whose opinion I felt bound to defer, that I might render a service if I prepared a smaller book on Physics for the use of Students of Medicine; and I have had great pleasure in acting upon this suggestion as opportunity offered.

The following pages are not a mere abstract of my larger work on the Principles of Physics (London: Macmillan). There must naturally be considerable parallelisms: but there are also considerable divergences in the mode of treatment; and some portions of this small book are eveu fuller than the corresponding portions of the larger.

This little volume is obviously not intended to be exhaustive; from its size there must inevitably be omissions: but I trust that none of these are such as to interfere seriously with its usefulness. Again, since the book is inteuded for a special class of students, the subjects which most closely concern them will be found treated in greater detail than those which are of less direct utility. On the other hand, it is to be noted that this volume does not profess to discuss moot points in the application of physical principles to medical science, or to anticipate any practical directions as to methods of treatment or the like: the proper time for the discussion of such topics is reached in subsequent stages of the curriculum, when a general preparatory course of Physics has already been gone through.

Further, this work is not designed in any way to supersede but rather to clear the ground for practical teachiug and demonstration. The Sludent of Medicine
is something like a Student of Engineering, and his knowledge of Plysies ought above all things to be real and actual. He ought to become personally aequainted with each piece of apparatus, and to satisfy himself as to how it works; and he ought to see phenomena for himsclf. No book, and no mere lectures, can supply this practical knowledge ; and on this ground I venture to think that the subject of Physies, looked at from a medieal point of view, ought in every ease to form an experimental part of the professional curriculum.

I trust that this book may be found to combine two main functions; that of giving the Student of Medieine a broad general view of Elementary Physies as a whole, and that of providing a satisfactory course of preparatory matter, which shall prove interesting to him and put him in a pusition better to understand the specialised instruction which he will receive during the later stages of his study.

I shall be grateful for any suggestions which may tend to increase the utility of the book, to eure any defects, or to remove any blemishes from it.

> ALFRED DANTELL.

$$
\begin{gathered}
\text { S New Court, Linconn's Ins, } \\
\text { London, W.C. }
\end{gathered}
$$

CONTENTS

CHAPTER I

Units of Measurement

rage
The C.G.S. System 1
Unit of Length, 2 ; Yerniers 3
Unit of Angle, 3 ; of Mass, 4 ; of Time 5
CHAPTER II
Motion of Bodies
Degrees of Freenom 6
Thanslation.-Centre of Figure and of Mass 7
Velocity, 8 ; Momentum, 10 ; Acceleration, 10 ; Foree,13 ; Pressure, 17 ; Tension, 18 ; Centrifugal Foree,19 ; Resolution of a Foree, 20 ; Work, 20 ; Meehani-eal Powers, 22 ; Aetivity, 25 ; Energy .26
Rotation, 29 ; Moment of Inertia, 30 ; Torque, 31 ; Couples, 32 ; Levers, 32 ; Energy of Rotation 34
Deformations ol Strains 35
Oscillations and Vibrations 35Simple Harmonie Motion, 36 ; Waves, 40 ; Rellexion,44; Refraction, 46 ; Stationary Vibrations, 47 :Interferenee, 48 ; Diffraetion, 49 ; Energy50
CHAPTER III
Friction
Statical Frietion, 51 ; Kinetieal, 53 ; Work. 54
CHAPTER IV
Matter
Essfatial and General Properties 56
Tife Gentral Properitifs of Matter 57Inertia, 57 ; Gravitation and Weight, 57 ; the Pendulum,59 ; Centre of Gravity, 60; Density and SpecifieGravity, 63 ; Divisibility 66
Tire Etier 67
Moledules and Λ toms 68
Ulitragaseous Matter 73
Gases.-General Properties of Perleet Gases 74
General Staties of Gases 56
General Kineties of Gases 90
The Pressure of the Atmosphere 94
Anomalies in Ordinary Gases 108
Tife Critical State and Liquffaction 109
Liquids.-General Properties. 110Compressibility, 112; Expansion by Heat, 113; Sur.
Liquids-Continued. page
face Tension, 114; Superficial Tonghncss, 118; Solution, 118 ; Diffusion, 121 ; Osmosis, 122 ; Eva- poration, 127 ; Dewpoint, 129 ; Boiling 132
Statics of Liduids and Liquid Pressure 133
Flow of Liquids 142
Solidification of Liquids 166
Solids.-General Propertics 167
Deformations of Solids 170
Resistance to Deformation 180
Elasticity of Solids 182
Vibrations of Solids 188
Strengtlo of Matcrials 190
CHAPTER V
Sound
Production of Sound 193
Propagation of Sound, 195 ; Reflexion, 199 ; Rcfrac-tion, 200 ; Interference, 200 ; Sorrces of Sound,201 ; Harmonics, 205 ; Forced Vibrations and Rc-sonance, 206 ; the Human Ear, 212 ; Pitch, 213 ;Loudness, 215 ; Timbre, 215 ; Discord, 217 ; Dif-ference and Summation Toncs217
CIIAPTER VI
Heat
Heat a Form of Enerey 219
Units of Heat, 222 ; Measurcment $22 \cdot 2$
PAGE
Cifange of State 224
Temferature 231
Thermometers, 234 ; Speeific Heat 239
Conduotion and Convection 243
Cooling Surfaee 248
Transformation of Hfat into Work 250
CIIAPTER VII
Ether-Waves
Produotion of Ether-Waves 252
Colour, 256 ; Prism, 259 ; Law of Exehanges, 262 ; Resonanee, 263 ; Absorption-Speetrum, 264 ; Colour by Reflexion, 267; Fluoreseenee and Phospho- reseenee, 270 ; Caloreseenee 271
Veloeity of Propagation 271
Photometry 272
Polarisation 273
Reflexion and Refraction $27 \overline{7}$
Plane Mirrors, 280; Coneave Mirrors, 283; Convex Mirrors, 288 ; Refraction, 289 ; Prism, 291 ; Spee- trum, 291; Minimum Deviation, 291 ; Speetro- seope, 293 ; Aelromatisation 295
Lenses 295
Thin-edged, 296 ; Thiek-edged, 302 ; Dioptry, 304 ;Non-axial Points, 307 ; Depth of Foeus, 309 ; Cur-vature of Images, 310 ; Optieal Centre, 311 ; NodalPoints. 312 ; Cylindrical Lenses, 314 ; l'eriscopieLenses, 315 ; Foeal Length, 316 ; Angle of a Lens,
Lesises-Contimucd. PAGE
319 ; Magnification, 313 ; Combinations of Lenses, 322 ; Foeussing, 323 ; Equivalent Lens, 323 ; Cen- tring, 325 ; Splicrical Aberration, 325 ; Correction, 327 ; Achromatic Condenser, 330 ; Distortion of Images, 331 ; Chromatic Aberration 332
Oprical Instruments 335
Interfermace 343
Dillmaetion, 346 ; in Mieroseopes 347
Aperture of an Objcetive 349
Measurement of Wave Lengtl 356
Double Refraction 354
Lotatory Polarisation, 360 ; the Saeeharimeter 361
CHAPTER VIII
Electricity
Galvanic Cells, 363 ; Stress in the Ether 367
Eleetric Cirrent, 369 ; Commutator 371
Effects of a Current 372
(a) Production of Heat. 373
Resistance and Conduetance, 376; Resistanee Boxes, 378 ; Wheatstone's Bridge 379
Branched Currrents, 381 ; Shunts 382
Differenee of Potential, 383 ; Ohn's Law 383
Energy in a Cirenit 386
(b) Promucrion uf Ligiet 387
Crips in Cireuit, 387 ; High Resistanees, 387;
Geissler 'Tıbes, 389 ; Riontgen Rays 390

xiv PHYSICS FOR STUDENTS OF MEDICINE

PACE
(c) Electrolysis 391
Faraday's Law, 393 ; Action at the Two Elec- trodes 394
Density of a Current 397
(d) Pioduction of a Magnetio Field 397
Magnetic Field and Magnetism 397
Magnetie Poles 399
Terrestrial Magnetism 401
Magnetic Circuit 403
Magnetie Character of Electric Cireuit 405
Action of Currents npon Magnets 406
Galvanometers 407
Aetion of Currents upon Currents 410
Aetion of a Current upon Soft Iron 413
Magnetic Induction, 417 ; Diamagnets 417
(c) Piysiological Effects 419
Quantity of Electricity 420
Eleetrostatie Charges, 421 ; Field of Force, 423 ;Potential, 427 ; Current, 430 ; Insulation, 431 ;Capaeity, 432 ; Energy of Charged Body . . 432
Electrostatic Induction 434
Elcetroscope, 435 ; Eleetrophorus, 436 ; Condenser, 437 ; Leyden Jar, 437 ; Specific Inductive Capa- eity 439
Phoduction of Difference of Potential. 439
Contact of Non-Mctals, 440 ; Contact of Mctals, 442 ; Galvanic Cells, 443 ; Polarisation, 444 ; Storage Cells, 446 ; Arrangement of Galvanic Cells 447
Thermoelectric Micthods 450
Other Mcthods 451
The Variable Perion. 453
Induction of Secondary Currents, 455 ; InduetionThe Sirable Period-Cometinecd.patil:
Coil, 456 ; Self-Induetion, 458 ; Dynamo Machines,
45 S ; Eleetromotors 493
Alternaming Cuhrents 464
The Telephone, 466 ; the Mierophone, 467 ; the Photo- plione 467
Eleothomagetic Waves 468

CORRIGENDA

Page 2, 1. 10 from foot: Onc sq. cm. $=0.1550$ sq. in. $=0.001076 \pm$ sq. ft.
One sq. ft. $=929^{\circ} 014 \mathrm{sq} . \mathrm{cm}$. One cub. cm. $=0.0610254 \mathrm{cub}$. in. One litre $=1 \cdot 7607$ British pint.
Page 1, 1. 17 from foot: One British gallon $=4.5436$ litres.
, ", pint $=0.56795$ or nearly 0.568 litrc.

One fluid ounce $=2 S^{\circ} 4 \mathrm{cub}$. cm.

CHAPTER I

UNITS OF MEASGREMENT

Scientific men use the centimetre, the second, and the gramme as their units of length, time, and mass; and by adhering to this-or indeed by adhering to any system of units, such as the Foot, the Second, and the Pound, or the foot, the minute, and the grain, so long as all measurements are effected in terms of the same fundamental units-a great advantage is secured, namely, that when a problem is solved by means of a known mathematical equation which sets forth the law of the phenomenon in 'ruestion, the answer' comes out in terms of the same system of units, and needs no farther reduction. Physical quantities measured in terms of the Centimetre, the Gramme, and the Second, are said to be measured in units of the C.G.S. system, or in C.G.S. units. We shall, in the main, adhere to this; for the student will find it a labour-saving device to stand steadfastly by one systcin.

The Position of a point on a Line may be stated in terms of its distance, along the line, from a starting-point agreed upon. That of a point on a Surface may be stated by a method analugous to the statement of the Latitude and Longitude of a place on the earth's surface; and thus we may have the " log" of any particular object in a microscopical preparation, which may be found again at any time if we record the amount by which the stage must

玉

be shifted forward, and to one side, when the slide is put upon it in a definite position. The position of a point in Space may be specified in an analogous way by stating its heiglit and its distance in horizontal and lateral directions; and on this principle it has been found possible to devise apparatus for recording the outline of statuary, etc., or even for mechanically reproducing these.

The unit of length usually employed in physical work is the Centimetre.

One centimetre (cm.) $=0.3937$ iuch $=\frac{1}{10}$ decimetre $=\frac{1}{10} \overline{0}$ metre.

One decimetre $=10 \mathrm{~cm} .=\frac{1}{10}$ metre.
One metre $=100$ centimetres $=1000$ millimetres $=3 \cdot 28087$ feet $=3 \mathrm{ft}$. $3 \frac{3^{3 \prime \prime}}{}$ less $\frac{1}{1} \frac{1}{19}$ inch.

One millimetre (mm.) $=\frac{1}{10} \mathrm{~cm} .=\frac{1}{2} \frac{1}{5} \cdot \frac{1}{4}$ inch.
One micron $(\mu)=\frac{1}{1000}$ millimetre (Royal Microscop. Soc.'s standard $)=0.0001 \mathrm{~cm}$. The same symbol μ is also applied to $0.000000,1 \mathrm{~cm}$., as where it is said that the wave-lcngth of a particular kind of light is 600μ, or 0.00006 cm .

Onc"tenth-metre" $=1$ metre $\div 10^{10}=0 \cdot 000,000,01$ cm .

One inch $=25.4 \mathrm{~mm} .=2.54 \mathrm{~cm}$. ; one foot $=$ 30.48 cm .

An English half-penny is 1 inch in diameter ; a penny 1.2 inch; a French sou (5 centimes) is $2 \frac{1}{2}$, a two-sous (10 c .) 3 centimetres in diameter.
One kilometre $=1000$ metres $=100,000 \mathrm{~cm} .=$ 0.621377 mile.

One mile $=1 \cdot 6093$ kilometres.
One square cm. $=0 \cdot 1496$ sq. inch $=$ 0.0010417 sq. ft.

One sq. inch $=6 \cdot 4516 \mathrm{sq} . \mathrm{cm}$. ; one

I Square CENTIMETRE

Fig. 2.
$\mathrm{sq} . \mathrm{ft} .=929 \cdot 030 t \mathrm{se} . \mathrm{cm}$.
One cubic cm. $=0.0610325$ cub. inch $=0.00035317 \mathrm{cub}$. ft.
Onc cub. inch $=16 \cdot 386$ cub. cm .
One cub. ft. $=28,315 \mathrm{cub}$. cm. $=28 \cdot 315$ litre $=0.02 S 315$ cub. metre.
One cubic decimetre $=$ onc Litre $=1000 \mathrm{cnb} . \mathrm{cm} .==^{\frac{1}{0}} 00 \mathrm{cub}$. metre $=0.035317$ cub. ft. $=1.7657$ l3ritish pint.

One cubic metre $=1000$ cub. decimetre $=1,000,000$ cub. $\mathrm{cm} .=1000$ litres $=35 \cdot 317$ cub. $\mathrm{ft} .=61025 \cdot 386$ cub. inches.

In careful measurement a Vernier has often to be employed, in addition to the measuring scale made use of. Verniers are small subsidiary scales which may be slipped up and down the main scale. In the Barometer-Vernier (Fig. 3), ten divisions on the veruier are equal to eleven on the main scale; and the numbers on the vernier run back, against the numbers on the main scale. Suppose we have to find the height of the mercury in the barometer, and that it stands somewhere between 29.5 and 29.6 on the main scale. We slip the vernier down until its zero coincides as exactly as possible with the top of the mercury; then we look down the vernier until we find the vernier mark coinciding with a graduation mark of the main scale. Say that the vernier mark 6 does this (coinciding with 28.9 on the main scale), then the missing number is 6 , and the reading of the iustrument is $29 \cdot 56$.

Scale.Vernier (BAROMETER) Fig. ${ }^{\text {U. }}$

In the Sextant-Vernier, largely used in instruments of Continental make, ten divisions on the vernier are equal to nine on the main scale; and the numbers on the vernier run

Scale:Vernier (Sextant)
Fig. 4. in the same direction as those on the main scale (Fig. 4). Again the zero of the vernier is laid opposite the level of the mercury, and the mark up the scalc whieh first coincides with a graduation mark of the main scale gives the number required in the second place of decimals.

In all cases of measurement care inust be taken that the eye looks directly, not obliquely, at both the object and the scale. If this is neglected errors are induced through parallax, or apparent mutual displacement of the object and the scale.

The least visible white granule on black paper seems to be about $\frac{1}{200}$ inch, or $\frac{1}{30} \mathrm{~mm}$., in diameter, not quite twice the greatest diameter of a red blood corpuscle.

In Nobert's latest test-plates for microscopie lenses, the finest graduation consists of parallel lines ruled on glass at about 225,200 lines to the inch.

The Unit Angle in Rotation is the "Radian" $=57^{\circ} 14^{\prime} 44^{\prime \prime} \cdot 8$, the angle whose arc is equal to the Radius (Fig, 5).

One "Centrad" $=\frac{1}{100}$ radian ; used in ophthalmology.

Fig. 5.

The Mass of an object is the Quantity of Matter in it. This is measured by the quantity of matter whieh it will counterpoise in a Balanee. The unit of mass is the Gramme, which is the mass of one cubic em. of water at 3.9° C. $\left(39^{\circ}\right.$ Fahr. $)$

Deeigramme $=\frac{1}{10}$ grm. ; eentigramme $=\frac{1}{100}$ grıu. ; milligramme $=\frac{1}{1000}$ grm.

Kilogranme $=1000 \mathrm{grms} .=$ mass of 1 Litre of water at $3 \cdot 9^{\circ} \mathrm{C}$. $=15432 \cdot 35$ grains.

One Gramme $=15 \cdot 43235$ grains; 1 Kilogramme $=2 \cdot 20462$ lbs.
$1000 \mathrm{kgr} .=1$ "tomne" $=2204 \cdot 62 \mathrm{lbs}=0 \cdot 9842$ English ton $=$ 1-10231 American or "short" ton of 2000 lbs .

Frenel 20 eentimes silver $=1$ eentine bronze $=1$ gramme.
German 1 pfemnig bronze $=2$ grammes.
U.S. dime $=$ German 5 pf. nickel $=\frac{21}{2}$ grammes.

German 10 pf. niekel $=4$ grammes.
Frenel frane $=$ Freneh 5 c. bronze $=$ U.S. 5 e. niekel $=5$ grammes.

Freneh 2 fr . silver $=$ Freneh 10 e. bronze $=10$ grammes.
Thus grammes may be weighed out with newly-coined Freneh bronze coinage at 1 granme per eentime.

One 1b. avoirdupois $=16$ ounees $=7000$ grains $=453 \cdot 593$ grms. $=\frac{1}{10}$ British gallon of water at $62^{\circ} \mathrm{F}$.
One oz. avoird. $=1$ fluid oz. water at $62^{\circ} \mathrm{F} .=28 \cdot 34956$ grms. $=437 \frac{1}{2}$ grains.
Three British pennies (new) $=1 \mathrm{oz}$ a a voirdupois.
One grain $=0.064799$, or nearly 0.0648 granme
One British gallon $=10 \mathrm{lbs}$. water at $62^{\circ} \mathrm{F} .=8$ pints $=$ $277 \cdot 274$ eub. in. $=4 \cdot 53228$ litres.
One British pint $=20 \mathrm{fl} . \mathrm{oz} .=1 \frac{1}{4} \mathrm{lb}$. water at $62^{\circ} \mathrm{F} .=$ 0.566535 litre.

One fluid ounee $=1 \mathrm{oz}$. avoirl. of water at $62^{\circ} \mathrm{F} .=_{2^{3}}^{\frac{1}{0}}$ British pint $=227 \cdot 1642$ enb. em.
Ameriean gallon $=8 \mathrm{lbs}$. water ; Ameriean pint $=1 \mathrm{lb}$. water.
For preseriptions, ete., the grain is at present the basis ; 480 grains $=24$ seruples $=8$ draehus $=1$ Old Apothecaries' ounee. The old apotheearies' ounee is not now in use, exeept in preseriptions; "an ounee" of any ehemieal, bought at a chemist's, is the avoirdupois ounce of $437 \frac{1}{2}$, not of 480 grains.

The fluid ounce ($=437 \frac{1}{3}$ grains weight of water at $62^{\circ} \mathrm{F}$.) is divided into 8 fluid draehms, or 480 minims. Each minim of water, at $62^{\circ} \mathrm{F}$., weighs 0.901146 grains.

In solutions, say of " 10 per cent" strength, distinguish as
follows : A solution, say of bromide of potassium of " 1 to 10 " is KBr 1 gramme, water 10 grammes or 10 cub . em. ; or KBr 1 oz., water 10 fluid ounces ($=10 \mathrm{oz}$. wt.) A solntion of " 1 in 10 " is li Br 1 grm ., water 9 grms . or 9 cub. cm. These assume that for use the solution is to be weighed ont. But when the solution is to be measured out, the possible difference in volume between the water used and the solution produced has to be kept in mind. Hence, for measuring out, " 1 in 10 " would be 1 part by weight of the salt contained in 10 parts by volume of the solution; thins take KBr 1 gramme, water to make up to 10 cub. cm . ; or KBr 1 oz , water to make up to $10 \mathrm{H} . \mathrm{oz}$; and read the quantity, measured out in cub. em. or in fl. oz. of the solution, as fractions of a gramme or of an avoirdupois ounce of the salt dissolved. Frequeutly what is wanted is " 1 grain in 10 minims"; for this take KBr one apothecaries' onnce ($=480$ grains), water to make up to 10 11. oz.

The unit of time is the Second.

This is $\overline{8010 \pi}$ the avcrage length of a solar day, that is, from noon to noon; noon being the time when the sun, lying directly south, is lighest in the heavens.

CHAPTER II

MOTION OF BODIES

There are three ways in which a body may move: it may undergo Translation, mere travelling from one place to another along a straight or a curved path; or it may Rotate round some axis either within its own substance or outside the same; or it may become deformed, and if it be deformed it may or may not ultimately regain its original form, or nearly its original form, with or without Vibration; and it may do any or all of these things simultaneously.

A minute particle is said to have three degrees of freedom to move: it may, for example, move up-anddown, side-to-side, or fore-and-aft. If it be restricted to a given surface, it has only two degrees of freedom, for it cannot leave that surface; if it be restricted to one surface and at the same time to another surface, it can only move back-and-fore along the line where these surfaces intersect, and has only one degree of freedom. A body, as distinguished from a particle, has these three degrees of freedom and also three others: it can spin, for example, round an axis situated up-and-down, an axis lying from side-to-side, and an axis lying fore-andaft. If one point of the body, and one point only, be held fixed, the borly can rotate in any way round axes passing through that point. If two points be held fixed, the body can rotate round an axis which passes through
these two points. If three points be held fixed, it cannot move at all.

If a piece of apparatus be mounted on three sharp points laid in conical sockets on a baseboarl, it can he lifted off the baseboard, anl it can always be put back in the same position on that board. If its lower face bear a V -shaped projeetion, and if this be laid in, or better, pressed by a spring into a eorresponding V-shaped hollow in the baseboard, the anparatus can only slide to-and-fro along the groove, or else be lifted or tilted off the board; and when the V-shaped projection is run up against a stop-pin in the V-shaped groove, the position of the apparatus is again clefinite with respect to the board. The same fixation by deprivation of degrees of freedom may be seen in aseptic removable knife-blades, interchangeable in a spring-handle.

In what follows we shall first concern ourselves with the movements of Translation of a body.

Translation

In every body or object there is some point whose position is the average of all the positions of all the several particles of the body. This point is called the Centre of Figure of the body. Again, in every body there is some point which corresponds to the average position of the whole Matter of which the body is made up ; and this point is called the Centre of Mass. If the body be of uniform substance throughout, the Centre of Figure and the Centre of Mass of the body are identical ; if not, the centre of mass and the centre of figure may be at different points, as in the case of the moon, which is to some extent like a loaled billiard ball, heavier towards one side though symmetrical in form, and therefore having its centre of mass, as it were, displaced towards the heavier side.

When parallel Forces act on the several particles of a body, on each in proportion to its Mass, the aggregate result is as if a single force had acted on a single
particle situated at the centre of mass; and the body as a whole undergoes a corresponding Translation. When we say that a material body undergoes Translation, we may therefore confine our attention to the movements of its centre of mass; and this simplifies matters considerably.

When a body mores in a Straight Line, its Direction of Motion is the straight line itself. When it moves

Fig. 6. in a Curve, its direction of motion at any point of that curve is the direction of the tangent to the curve at that point. In Fig. 6, when the body is at the point P in the path $A B$, the direction of movement is for the moment in the direction $\mathrm{PC}: \mathrm{PC}$ is "the tangent to the curve" at P .

The Velocity of a moving body, moving uniformly in any direction, is the number of cm . traversed by it per second. If it move 60 cms . in 10 sec., the velocity is 5 cms.-per-second. Of a body not moving uniformly, the "mean velocity" is the average velocity, the whole space traversed divided by the whole time: a railway train which reaches a point 36 kilometres away in one hour, has a mean velocity of 36 kiloms. per hour, or 1000 cms.-per-second. At any particular moment the train may, however, he covering say 40 metres in 2 seconds; during that time its relocity is $2000 \mathrm{cms} .-\mathrm{per}$-second.

If a body be by any means affected with two velocities simultaneously, and if these velocities be constant in direction and amount, the result or "resultant " is a single velocity in a Straight Line.

Let a steamship steam eastwards and drift northwards simultaneously, starting from the point 0 . It will, in a given time, reach a point Λ which lies both so far to the north and so far to the east; in twice the time it will reach a corresponding point 3 : after successive equal intervals it reaches the points C, D, etc. ; the points Λ, B, C, D, etc., all lie in a straight line, and that straight line deseribes the aetual direetion and veloeity of
movement of the steamship.
The steamship travels along the line OD in the same time as it would lave taken to steam to E or to drift to N if there had been no drifting or no steaming respeetively. Therefore the Resultant of the two veloeitics is a single velocity along a line OD, which is the Diagonal of the Parallclogram OD (Fig. 7).

Fjg. To

The angle NOE need not be a right angle: the resultant is still in a line, whieh is the

Fig. S. Diagonal of the "Parallelogram of Velocities" (Fig. 8).

It is not neccssary to draw the eomplete parallelogram : it will suffice to draw from O a line whieh, in magnitude and direction, represents one of the velocitics ; theu from the other end of this line draw a line representing the other velocity. Join the free end of this line with 0 : the line thus drawn represents the resultant in its magnitude ; and the resultant velocity is along that line, in a

Fig. 9 direetion opposed to the dircetion of the components taken suecessively round this so-ealled Triangle of Velocities, as will be scen from the figure (Fig. 9).

By reversing the proeess we may break up or "resolve" OD into its components in any two dircctions. Let the problem

Fig. 10. be to resolve $O D$ into components in any two given direetions GH, IJ. From O draw a line parallel to one of these direetions, and from D draw a line parallel to the other ; these two lines cross one another in the point E. Mark the lines OE and DE with arrows opposed, in their dircetion romm the triangle, to the direction of OD ; the lines OD and ED represent the components sought for:

If we know two sides of the triangle of velocities it is always easy to find the third side. For example, suppose we know the actual course of a steamer to be, that it is travelling with uniform veloeity in the dircetion OD (Fig. 11) : but we also know that it is being stecred in the direction OE, sn that in the same time it onght to have reaehed E : what is the drift? It is represented loy the line ED. The addition of a drift more or less direetly athwart the line in which the
boat is being steered gives the actual movement a different direction.

Two equal and opposed veloeities balance one another, and the resultant velocity is nil. If a man walk astern on board a ship at the rate of 4 miles an hour while the ship is sailing at the same rate, he will be really marking time in the same place.

The Momentum of a body is the prodnct of its mass (in grammes) into its velocity (in cms.-per-sec.)

If a shell explode while travelling in a particular direetion, the aggregate momentum of the fragments in that direction is the same as that of the shell.

Let two bodies, freely suspendeci, strike one another: if they be inelastic they divide their joint momentum and move in the same direction with a common velocity; if we eould obtain perfeetly elastic balls, sueh balls would, upon collision in a line joining their eentres, recoil from one another, the one gaining by the collision as much momentum as the other loses ; and two equal and perfectly elastic balls, striking one another directly in the line joining their centres, wonld exchange their velocities. If balls strike one another otherwise than direetly in that line, they will spin as well as rebound. A perfectly elastic ball would rebound from a wall with the same speed as it reached it, and the momentum would be the same as at frrst, but reversed in direction ; that is, assuming that there were no vibration or spin set up in that ball ; but in actual cases the ball rebounds only with a eertain fraction of the original velocity ; and this fraction is called the Coefficient of Restitution.

Acceleration.-This is a gain or loss of Velocity, per second.

A train, making up speed from 36 kiloms. to 54 kiloms. per lonn in five minutes, gains speed, in the conrse of 300 seeonds, to the amount of 18 kiloms. per hour, or 500 cms -per-see. If the gain in speed be uniform, the train gains in velocity to the amount of $1 \frac{3}{3} \mathrm{~cm} .-$ per-see., during each seeond; and, as the phrase goes, its Aeceleration is $1 \frac{2}{3} \mathrm{~cm} .-\mathrm{per}$-sec. per second. If, on the other liand, it slaeken down in the same time from 36 to 18 kiloms. per hour, it undergoes retardation or negative acceleration; and its Aceeleration is saill to be $-1 \frac{2}{3} \mathrm{~cm} .-\mathrm{per}$ see. per second, a negative quantity. If there be no aeceleration, positive or negative, the velocity remains unchanged.

The Acceleration (in cms.-per-sec. per second) is usmally represented by the symbol a.

If v_{o} be the original velocity in a given direction, v_{θ} the velocity attained in the same direction at the end of a certain time t seconds; and if s be the space traversed during the time t : the relation between these terms v_{o}, v_{t}, t, s, and the uniform Acceleration α (or retardation $-\alpha$ as the ease may be) are given by the equations:

$$
\begin{align*}
r_{t} & =v_{o} \pm a t \tag{1}\\
s & =v_{o} t \pm \frac{1}{2} \alpha t^{2} \tag{2}\\
v_{t} & =\sqrt{v_{o}^{2} \pm 2 \alpha s} \tag{3}
\end{align*}
$$

Examples.-(1) Let a body fall from rest $\left(v_{o}=0\right)$ from the top of a eliff 100 metres ($s=10000 \mathrm{~cm}$.) high : what speed will it attain just before reaching the ground, and how long will it take to reach the bottom? Note, as a fact, that a falling body gains a velocity of 981 cm .-per-sec. in one second, $2 \times 981 \mathrm{~cm}$.-persee. in two seconds, and so on : that is, for a falling body, $a=981$ downwards. The problem therefore is, given v_{o}, s, and a, to find v_{t} and t. To do this we must piok out the most useful of the three equations above. The third equation is $v_{t}=\sqrt{v_{0}^{2}+2 a s}=\sqrt{0+(2 \times 981 \times 10000)}=\sqrt{19620000}=4429 \mathrm{~cm} .-$ per-sec., the velocity ultimately attained. The first cquation is $v_{t}=v_{0}+a t$; that is, $4429=0+981 t=981 t$; and $t=\frac{4+99}{y s 1}=4 \cdot 51$ seconds, the time taken to fall the given height.
(2) Let the same body be thrown down from the top of the eliff with an initial velocity of 20 metres per second $\left\langle v_{0}=2000 \mathrm{~cm} .-\right.$ per-sec. $)$ Then $v_{t}=\sqrt{(2000)^{2}+19620000}=$ $\sqrt{23620000}=4860 \mathrm{~cm} .-$ per- second ; and $4860=2000+981 t$; whence $t=2.91$ seconds.
(3) Let the same body be shot up from the top of the cliff with an upward velocity of 20 metres pier second ($v_{o}=-2000$ em.-per-see.) ; v_{t} is again 4860 cms.-per-sec., because $(-2000)^{2}$ is eqnal to $(+2000)^{2}$; but in the first equation $4860=-2000$ $+981 t$; whence $t=6.99$ seconds. The body, sent upwards with an upward velocity of 2000 ems.-per-sec., ascends, comes to rest for an instant, and falls back, passing the starting-point with a downward velocity of 2000 cms .-per-sec.
(4) A crieket-ball is thrown up into the air. It rises say 30 metres ($s=3000 \mathrm{~cm}$.) What is its initial velocity? What time will it take to ascend? Here the aeceleration is negative, being opposed to the direction of the initial motion ; it is therefore-981 ems.-per-sec. per second; and the body
rises until it has no velocity, and is "on the turn" (i.c. $v_{t}=0$). Hence the problem is, given s, a, and v_{t}, find v_{o} and t. From equation (3), $0=\sqrt{v_{0}^{2}-(2+981+300)}=\sqrt{v_{0}^{2}-588600}$; $v_{o}{ }^{2}=5886000 ; v_{o}=2426$ ems.-per-sceond, the initial velocity: From equation (1), $0=2426-981 t$; whence $t=2 \cdot 47$ seeonds, the time taken in the ascent.
(5) A train travelling at 22 kilometres (say 45 miles) an hour is abruptly stopped by a collision : what height would the passengers have had to fall in order to receive a similar blow? That is, what hight would they have had to fall from rest $\left(v_{0}=0\right)$ before the speed attained would he 22 kiloms. per hour ($v_{t}=$ 2000 ems.-per-see.)? Here we know $v_{o} v_{t}$, and a, and we want to find s. By the third equation, $2000=\sqrt{0+(2 \times 981 \times s)}$ $=\sqrt{1962 s} ; 1962 s=4000000 ; s=2038 \mathrm{em}$. or $20 \cdot 38$ metres (say 67 feet), the required height of fall.
(6) If a man step out of a ear running at 266 cms .-per-sec. (6 miles an hour), and do this at a run so that he takes two seconds to stop, what must be the retarding aeceleration? What must it be if he stumble and have to reeover himself within $\frac{1}{10} \mathrm{sec}$? In the first case, $v_{0}=266, v_{t}=0$, and $t=2$, whenee $\alpha=-133 \mathrm{em} .-$ per-sec. per second. In the latter, $t=\frac{1}{10} ;$ whence $a=-2660$, twenty times as great. The effort neeessary to eause sueh a prompt pull-baek, or negative aceeleration, sometimes fraetures bones.

If a body moving in one direction be subjected to an acceleration in another, lying more or less athwart its direction of motion, it swerves from its course.

A body A moving in a circle is continuously sulbjeet to an acceleration always at right angles to its direction of motion at any and every instant, that is towards the

Fig. 12. centre of the eirele; and this Aeceleration (in ems.-per.-see. per seeond) is equal to v^{2} / r, where v is the actual Velocity (in ems.-per-see.) in the circle, and r is the length (in ems.) of the Radius of that eircle. If it had not been for this acceleration the body would, after leaving any given point, say A, have travelled straight on in the direetion $A B$, the tangent to the eircle at that point A. So for cvery other point ; at every point the path is bent inwards; and the circular path is the resultant of the composition, at eael point, of a tangential path with a fall or movement towards the centre.

If a body be by any means subjected to different aceelera-
tions simultaneously, what is truc of Velocities in general is true of velocities-imparted-in-11mit-of-time, that is, of Accelerations; and thus we have a series of propositions concerning the composition and resolution of Accelerations cxactly parallel to the similar propositions concerning the composition and resolution of Velocities.

Force. -The product of the Mass of a body (in grammes) into its Acceleration (in cms.-per-sec. per second), if it have any, is called the Force supposed to be acting upon the body, so as to make it go faster or slower, or to change its direction of motion. If there be no acceleration there is no Force acting. The unit of Force is called a Dyne, and the Dyne is the Force observed when a gramme-mass gains or loses a unit velocity (1 cm.-per-second) during one second; that is, when a Unit Mass undergoes a Unit Acceleration.

In a particular case Force has a special name. When a body is allowed to fall freely in a vacuum, it gains steadily in speed, acquiring a velocity of 981 cmss .-per-sec. at the end of one second, twice 981 at the end of two seconds, and so on. The acceleration downwards is therefore 981 cms.-per-sec. per second, whatever be the mass of the falling body. The downward Force acting on say 10 grammes is the product (Mass \times Acceleration) $=(10 \times 981)=9810$ dynes; and the force acting on 1 gramme $=981$ dynes. This downward Force of Gravitation, acting on any given mass, is called the Weight of that mass; the Weight of one Gramme is equal to 981 Dynes; whence the Dyne is found to be $\frac{1}{981}$ the weight of one Gramme.

The above statements regarding Force imply that the body moves freely. But take the case of a

Fig. 13. railway train ruming on a level; it does not run freely ; it continuously tends to slacken speed by reason of Friction, exactly us if it had a heavy mass of say 1 kilo. per 320 kilos. $(=$ say 7 lhs. per ton) of train-load to
pull vertically up over a pulley ; and if the train run at a uniform velocity, the duty the engine is performing is that of preventing slowing off in speed.

Let the train weigh 160 tonnes of 1000 kilogr. each ; the retarding foree is equal to the Weight of $\frac{700}{320}$ tonne or 500 kilogr. or 500,000 grammes. This Weight is equal to 500,000 $\times 981=490,500,000$ dynes ; and the eugine must exert a pull equal to $490,500,000$ dynes in order to neutralise the retarding foree of friction and keep the spced constant. The Weight of 500,000 grammes, considered as a retarding Foree acting on a mass of $160,000,000$ grammes, would have produeed a backward or negative aceeleration a; this is prevented by the foree exerted by the engine; this foree $\mathrm{F}=$ the mass acted upon $\times a$; that is, $490,500,000$ dyues $=160,000,000$ grammes $\times a$; hence $a=3.065625 \mathrm{~cm}$.-per-see. per seeoud. The Force exerted by the engine is the product of the mass moved into the aceeleration prevented, which is 3.065625 em .-per-sec. per second.

If the train gain speed, the force or pull exerted by the engine is the product of the whole mass of the train into the negative aeceleration prevented, plus that of the mass into the positive acceleration produced. Let the engine work up speed steadily, so as to gain a vclocity of 18 kiloms. per hour in 5 minutes; the aeceleration produeed is $\frac{5}{3} \mathrm{~cm}$.-per-sec. per second ; the produet of this into the mass is the foree producing aeeeleration, namely $\frac{5}{3} \times 160,000,000=266,666,666$ dynes. The sum of this and the preceding is $757,166,666$ dynes; and this is the total Foree or pull exerted during the gain of speed. The pull upon the couplings is therefore the same approximately, whatever the speed may be, provided that the speed remains uniform; but the pull upon the couplings is inereased when the traiu is gaining speed, and falls off when it is slackeniug.

But there may be cases in which there is no movement whatever, and therefore no acceleration; in such a case all that a Force does is to prevent an opposite acceleration being produced by au opposing force.

Take the case of two wrestlers, equally strong and at equal grips; they may exert violent pressure upon ono another without being able to push or displace one another a single iuch. Take the ease of a stone held in the hand; the stone continuously tends to fall, but yet does not fall ; meither does the hand lift the stone. In the latter of these two cases the Weight of the stone would, were it not for the hand, result
in a dowmard motion of the stone; on the other hand, the upward Pressure exerted by the hand would, were it not for the weight of the stone, result in the stone being hurled upwards. Between the two tendencies the stone remains at rest; if either of these flagged the stone would move; but as the tendeney downwards, the so-called gravitational attraction or the Weight, is unflagging and muwearied, the matural resnlt is that the hand may grow wearied and flag in its upward pressure, and then the stone will sink or fall. So long, however, as the hand ean hold ont, there is equilibrimm between the downward Weight of the stone and the upward Pressure of the hand, and each of these prevents the Acceleration which the other tends to prorluce.

Where a man faints and is about to fall to the gromed, and others help him by letting him down easily, Hhey exert an upward force which partially prevents that downward acceleration which gravity tends to prodnce.

Let a man fix a stout spring into a wall and slowly pull the other end towards himself. At first he can pull it. There is a resisting counter-force which pulls against him ; but he can overcome this. As he pulls, and the deformation of the spring increases, the resisting force goes on increasing. At length the resisting counterforce becomes erpual to the task of preventing him from pulling the sjring out any farther. At this moment we have the spring pulling the man and the man pulling the spring ; and neither of them is then able to make the other move. The force exerted by the man and the counter-force exerted by the spring are then in equilibrium ; they are equal and opposite to one another.

To the spring it does not matter, nextly, whether the stretching force be exerted by a

Fig. 14. man or by the weight of a sufficiently heavy body, as in Fig. 14; and if a weight be applied, as in the figure, such as will stretch the spring to the same extent as the man had done, we at once find the value of the Force exerted by the man.

For example, let the weight required to prodnce an equal extension of the spring be the weight of 80 kgrs., or 80,000
grammes ; then the man's foree was $80,000 \times 981=78,480,000$ dynes. Conversely, if that man apply this maximum force of his to the task of pulling up heavy masses by means of a cord slung over a pulley, supported by any convenient means, he ean only lift 80 kgrs. off the gromnd ; and the weight of a mass of 80 kgrs. on the one hand, and on the other hand the counterforce of the spring at the fullest extension of it which the man can compass, are equivalent aud cqual.

We may therefore measure Forces by finding the deformations which they can produce in springe, and then ascertaining what weights are required in order to produce the same deformations.

For cxample, in cstimating the power of grasp of the hand in the diagnosis of nervous diseases, such as partial or general paralysis, an instrument called a dynamometer is used, in which the hand is set to squeeze a spring out of shape: the deformed spring aetuates a pointer whieh points to a certain figure on a scale; and the seale is graduated in terms of the differcut weights which, acting upon the same spring, will produce the samc deformations of that spring. The same principle is applied in the common spring balance, in which known weights produce known deformations; and the weight of a given body or the value of any given pull may thins be read off on a scale attaehed to the instrument.

A stretched spring is in a condition of stress: it pulls upon both its ends equally and oppositcly.

A compressed spring, again, is in a condition of stress: it pushes both its ends apart, cqually and oppositely.

In every case whore Force is cxerted there is a condition of Stress: for wherever an object A is pressed or pulled towards or from or attracted towards or repelled from an object B, the object B is equally pressed or pulled towards or from or' attracted towards or repelled from the object A. As Sir Isaac Newton put it: "To every action (i.e. to every Force) there is always an equal and contrary Reaction ; or the mutual actions (i.e. forces) of any two bodies are always equal and oppositely directed." The force acting upon A and the opposite force acting on B are equal ; but if the Masses of A and B be not equal the respective Accelerations of the two bodies towards one
another will not be equal ; for it is, in regard to each of the objects A and B, the Force, that is the product of the Mass into the Acceleration, which is the same in both.

If a liglit amil a heavy ball be connected by an incliarubber cord, and if they be pulled apart and let go simultanconsly, each will move towards the othcr, but the heavier one will move more slowly.

When a shot is fired from a gun, if the gin be free to move, the shot moves forwarls and the gun moves slowly backwards. If the bullet and the gin liad been of equal weight, they would have flown apart with equal velocitics; and, short of this, the heavier the bullet the greater is the tendency for the gun to fly baekwards upon discharge.

The earth attracts the moon and the moon equally attracts the earth; but the moon, being the lighter of the two, has more acceleration towards the carth than the earth has towards it.

When a stone is thrown upwards from the earth, the cartly is equally thrown dornwards: but the earth is so men larger than the stone that its downward movement is inappreciably smałl. Similarly a man pushes the earth down at every step: Archimedes needed no lever to move the Earth. If the earth be soft locally, the pedcstrian's foot is driven into it as it yields; and in boggy soil every effort canses him to simk more deeply:

When a horse is inexperienced he may be found trying to pull a heavy tramcar suddenly forward with a jerk; but as the traces tighten, he is jerked backwards as much as the car is jerked forward, and with a greater acceleration on account of his smaller weight. When a locomotive is suddenly started with a leavy train the wheels may go round uselessly; the reaction of the train is equivalent to a backward pull upon the locomotive, considered as alreally in motion.

Pressure. -If we rest a heavy body on a surface it produces Pressure, which is equal to its own Weight in dynes: and pressure produced by any caluse may be measured in dynes, by comparison with the Weights which can produce the same effect. Such pressure is a Total Pressure, and does not depend on the area of the body pressed upon; but Pressure is also often specified as an Intensity of Pressure, or a Pressure of so many dynes per sq. cm. of Area.

The distinction between a Total Pressure and a Pressure per sq. cm. of Area is a matter of importance. Cutting instruments, such as knives, chisels, or scissors, are instruments with a very restricted area or areas, through which the pressure of the hand may be exerted : and when we "sharpen" a knife we diminish the area of its edge. The cutting power of a knife depends directly on the pressure per sq. cm., which may become extremely great when the knife is extremely sharp. Λ blow on the skull by a round stone may subject the scalp to pressure over a very small surface, and cause it to give way almost as if it had been cut with a knife. A person finding limself straying into a quicksand or into boggy soil should throw himself down horizontally and creep back into safety, for he is not so likely to sink when he lies on a broad surface as when his weight is concentrated non the narrow surface afforded by lis feet alone. A person does not sink in snow when his weight is distribnted over a large area by means of large Canadian snow-shoes. Ice will bear a plank with a man standing upon it, when it could not bear the weight of the man standing directly on the bare ice ; and sledges can travel over snow in which cart-wheels would sink. In massage-rollers there are grooves and comparatively sharp annular protuberances between these; when the roller is uscd, the local intersities of pressure are comparatively great. The peuetrating power of a needle depends on the intensity of pressure; and it is greater if the needle have a triangular section, so that it presents cutting edges. When the weight of the body is borne by limited areas of the skin, the intensity of pressure may be great: whence bedsores, etc., and the necessity of even support uniformly applied, as in a water-bed, which is, mechanically, an appliance for equalising the intensity of pressure over the whole area of support.

Tension.-If we hang a mass m grammes on a wire, we cause a Pull or Tension in that wire equal to the Weight of the suspended mass, that is 981 m dynes. For comparison it is often convenient to find the crosssectional area of the wire, and to state the tension as a "traction" of so many dynes per sq. cm. of crosssectional Area.

Thus if we hang 50 grammes upon a wire whose cross-scetion has an area of ${ }^{\frac{1}{0} 0} \mathrm{Sq} . \mathrm{cm}$., the Total Tension is 49050 dyues; and the tension per $\mathrm{sq} . \mathrm{cm}$. is $\left(49050 \div \frac{1}{100}\right)=490500$ dynes per sq. cm. Where a cord, stretched by a weight, happeus to be
thimest, there the tension per sq. em. of cross-scetional area is greatest; and there, at the thimnest part, the eord has most tendeney to give way and snap.

Centrifugal Force.-Suppose a stone to be whirled round, like a slingstone, by means of a string, but in a perfectly circular path. The acceleration towards the Centre is (p. 12) equal to v^{2} / r, the square of the velocity divided by the radins: the force acting upon the stone, to make it travel in the Circle and not escape along some Tangent, is $m r^{2} / r$ dynes, where m is the mass of the stone, in grammes. In the case of the slingstone this force is exerted by means of the tension of the string : and if the Velocity exceed a certain limit, this tension will become too great, and the string will snap. The stone will then fly off at a tangent.

A fly will be hurled off a rapidly rotating wheel, for it cannot adhere firmly enough to the rim by means of its feet. The eohesion of a rapidly rotating wheel may fail, and the wheel fall to pieees, eaeh of whieh flies off at a tangent. If the earth rotated seventeen times as fast as it does, loose objects would fly off its surface at the Equator: their weight would then fail to hold them down. Railway trains tend to fly the traek as they eome rapidly round eurves, and to run off at a tangent: the pressure of the flange on the outer rail prevents this.

A drop of oil, rotated, spreads ont into a flattened spheroid; and for the same reason the earth is itself an oblate spheroid, its Polar axis being the shortest. In the trundling of a wet mop the drops fly off. If a man were placed on a revolving table, with his feet towards the eentre, the blool in his body would be impelled towards his head ; and this has aetually been proposed as treatment for anæmia of the brain.

When light and heavy partieles are mixed and whirled the heavier fly outwards : thus milk is separated by a "centrifugal machine" from eream, or blood corpuseles from blood plasma.

The circus rider stands on horse-back slanting inwards. His own weight tends to make him fall inwards ; centrifugal foree tends to throw him off on the other side: his aetual position is one of equilibrium between these two tendeneies.

Resolution of a Force.-Where a force acts in a particular direction, the motion or pressure or tension produced in another direction is ascertained by "resolving"
the force in the direction in which that motion or pressure or tension is to be ascertained or measured.

For example, if the body is thrown forward and upward in walking, the forward and the upward components of the force may be considered separatcly: the former gives the
 body a forward motion; the latter acts as if it were a single force lifting the body against its own weight. When a child's head is being delivered by midwifery forceps, the pull on the head by means of the forceps Fig. 15. is inclined at some 29° to the maternal passages, and the effective component along these passages is less than the pull excred by the accoucheur. At the same time the other component is one at right angles to the walls of the maternal passages, and induces a detrimental pressure. On the principle that two sides. of a triangle are greater than the third side, it will be secn that the resultant components, if added together, would seem to be greater than the force applied ; but it is not a legitinate mathe-
 matical operation so to add them together, for forces in Fig. 16. different directions cannot be added. They may, however, be compounded. For example, the two forces AB, AD of Fig. 15 may be eompounded into their resultant, represented by the diagonal AC.

Work.-This is the product of the force acting or overcome into the space through which it acts or is overcome. The C.G.S. unit of work is the $\mathrm{Frg}=$ one dyne \times one centimetre.

Examples. - (1) The mean pressure of steam on the piston in a steam-engine is, say, equal to the Weight of 1000 grm . per sq. cm. ; the area of the piston is, say, $480 \mathrm{sq} . \mathrm{cm}$. ; the stroke of the piston is, say, 60 cm . What is the Work done at each stroke ? It is the product of the whole mean force or pressure, [(1000x $981) \times 480$] dynes, into the stroke 60 cm. ; it is therefore $(1000 \times 981 \times 480) \times 60=28,252,800000 \mathrm{crgs}$.
(2) Let a man whose weight is 72 kilogr. (say 11 st. 42 4 lbs.), and who presents an area of say 4500 sq . cm . to the wind, make his way through 1.6 kilom. ($=1$ mile nearly) against a storm which produces a mean pressure equal to the weight of $2 \frac{1}{2}$ grammes per sq. em. (=about 50 lbs. per sq. ft.) : what Work must he do against the wind? The Pressure overcome is $(2.5 \times 981 \times 4500)$ dynes; it is overcome through 1600 cm .; the Work donc is $(25 \times 981 \times 4500 \times 1600)=17655,000000 \mathrm{ergs}$.
(3) To what Height would the same work have lifted him vertically? In that case the Force resisted would have been his Weight, $(72,000 \times 981)$ dynes. The Height $=$ the Work \div the
 ft. From this we sce how unexpectedly great an effort it is to battle against heary wind.
(4) lf the mean or average force required to pull a vehicle along a rough road be equal to the weight of 50 kgr . when there are no elastie springs between the draught animal and the vehicle, and of 40 kgr . when there are, what is the ratio between the amounts of Work which must be done in pulling the velicle a given distance in the two cases? Here the space traversed is the same in both cases, and the work is proportional to the mean forces direetly : that is, it differs in the two cases in the ratio $50: 40$.

English engineers usually measure Work in footpounds. This is again the product of the Space traversed (feet) into the Force acting (pounds) ; but the Force acting is measured as so many units of Weight.

On this method a Force equal to the Weight of 10 lbs . is called a force of 10 lbs . This would be satisfactory were it not that the weight of a lb.-mass is a bad mit of Force, for it is not constant from place to place ; but the error is barely over $\frac{1}{2}$ per cent over the earth's surface.

Example.-The mean pressure of steam on the piston in a steam-engine is equal to the weight of say 30 lbs . per sy. inch: the area of the piston is say 30 sq . inches; the stroke of the piston is say 16 inches. What is the Work done at each stroke? It is the product of the whole pressure (equal to the weight of $30 \times 30=900 \mathrm{lbs}$.) into $1 \frac{1}{3}$ feet; it is therefore $900 \times$ $1_{\frac{1}{3}}=1200$ foot-pounds.

When the acceleration of gravity is 981 cm .0 -1er-sec. per second, one foot-pound $=13,562,691$ ergs.

The maximun work that muscle (i.e. frog-muscle) appears able to do at each contraction is snch as would raise its own mass 400 cm . ; that is, $400 \times 981=392400$ ergs per gramme of muscle.

The circumstance that the Work done is equal to the product of the Force into the Space traversed enables us, in many cases, knowing the Work done and the Space traversed, to measure the force acting. The work which we can make any mechanical contrivance do is never greater than the work which is expended upon
it ; and if any contrivance be so made as to erable us to get a given amount of Work done by a longer and less direct path, we find it easier to do that work, for the force along the longer path is less in proportion to the increased length of path.

In an Inclined Plane, suppose a heavy body is pushed up from A to B, where $A B=61 \mathrm{em}$., so as to make it gain vertical height equal to $C B=11 \mathrm{em}$. ; the Work

Fig. 17. done (apart from friction) = Weight of the body $\times 11 \mathrm{em}$. But this has been effeeted by exerting a foree less than the Weight, through a greater distance AB ; the Force exerted up the slope is thercfore $\frac{B C}{A B}$ times the Weight of the body lifted: in the instauce supposed, it is to the Weight of the body lifted as $11: 61$.

If the foree applied be kept parallel to AC , on reaehing the top the horizontal force will have been kept up through a horizontal distanee $\mathrm{AC}(=60 \mathrm{em}$.) ; the force exerted horizontally is therefore smaller than the Weight of the body, in the ratio 11: 60.

If the inelined plane be pushed under the heavy body, a movement of the wedge horizontally through, say 6 emi., would correspond to an upward movement of the heavy body through 1.1 cm . ; and the Force neeessary to aceomplish this wonld be $\frac{11}{60}$ the Weight of the heavy body. This is the principle of the wedge. In praetiee more work than this wonld have to be done on aecount of friction ; but frietion is useful in respect that it prevents the wedge from slipping baek.

The thread of a screw eorresponds, as may be seen in any specimen, to a narrow inclined plane wrapped round a eylinder. In a copying-press, say of arms 12 inches eaeh, serew $1 \frac{1}{2}$ inch thiek, with threads $\frac{1}{8}$ inch apart, when either hand mores through 1 inch the point of the screw moves $\frac{1}{6 \pm 5}$ ineln: henee the Force which can be exerted by such a screw-press is 648 times that whieh can be direetly applied by the hands. This is applied in table-clips, in presses for separating muscle juice from muscle, in clipping the points of forceps, etc.

The Screw is also nised as a means of measuring small thicknesses. For example, in measuring the thiekness of a mieroseopic cover-glass, the eover-glass is grasped by a pair of separable steel jaws whose mutual position is controllcd by a serew. If the screw have 20 threads to the inch, eaeh turn of the serew will scparate the jaws through $\frac{1}{20}$ inch ; and if the
serew-head (which is made of sulficient size and is graduated) have to be turned back through say 65° in orrler to enable the cover-glass to be graspel between the movable jaws, the thick-
 serew-head is turned through equal angles (c.g. when successively equal numbers of teeth on a milled head are caught by a pawl and ratchet and arm) we have equal amounts of travel of the screw in its nut; and this is applied in the Microtome, an instrument for entting successive very thin slices of tissue (as thin as $\overline{\operatorname{col}} \overline{0} 00$ inch) for microscopic examination; and in the Dividing Engine, whiel makes marks at equal distances apart upon a scale or tube which it may be desired to graduate, as in the ordinary thermometer. The pushing in of a wedge to a greater or less extent in some fine adjustments of microscopes, etc., essentially depends on the same principle. A vernier may be used at the edge of a large graduatel screw-head in order to ascertain precisely what the rotation of the screw is.

In the Differential Screw (Fig. 18) we have two screws of different pitches cut on the same rod. A is a milled head: B is a fixed nut: C is a movable nut kept apart from a fixed base E by the springs D, and prevented from rotating. Let the miner part of the screw have 10 turns to the inch and the lower part 12 turns. Let the milled head be turned, so as to lower the screw as a whole, throngh one complete turn; the screw as a whole descends $\frac{1}{10}$ incl, and tends to carry C down through that distanec. But C, being pmshed upwards by the springs, and not being

Fig. 18. able to rotate, tends to travel upwards as against the descenling serew: it can only do this, however, through $\frac{1}{12}$ inch. On the whole, therefore, C is carried downwarts $\frac{1}{10}$ inch less $\frac{1}{12}$ inch $=\frac{1}{10}$ inch for each complete turn of the milled head. This construction, which is sometimes usel in microscope adjustments, enables relatively coarse and strong screw-threads to be used for delicate work.

In Pulleys there are many varieties of form ; but in all cases we may ascertain the ratio between the Force applied by the operator and the force transmitterl by the machine, by finding the ratio between the Space traversed by the liand at A and the space Fig. 19. traversed by the pulling hook or ring attaehed to the pulley at B. If B move upwards through 1 inch when the hand pulls A downwards through 8 inches, B is pullecl up with a foree 8 times that applied to A.

In the Knee the same mineiple is applied. When the rod AB , dointed at O , and sliding between gnides at A and B, has its joint 0 pressed in, so as to straighten the rod

Fig. 20. or knee AB, a considerable movement of O corresponds to a very small movement of A and $] 3$. This is utilised in some copying-presses, rail-way-tieket endorsing maehines, ete. On the same principle the pull ou the walls is great and the tension of the wire eonsiderable when an overhung telephone wire is swung by the wind.

Another form of pressing apparatus is that of Fig. 21. OA is a lever jointed at 0 ; the lower part is fashioned so that the plate $B C$ is pressed farther down the farther A is pushed over, for the radii of the eurve at the bottom of the lever, round the point 0 , inerease steadily from point to point. A eontrivance with varying radii is ealled a cam. As before, the ratio between the movement of the hand at A and that of the plate BC gives the mechanical advantage of the device.

Fig. 21.

In many surgical instruments the same principle is illnstrated. In all eases the meehanical advantage is the ratio between the travel of the hand and the travel of the ultimate moving part of the apparatus. For example, in bone pliers, if the hand eontract througl 3 inches, while the l,hades move through $\frac{1}{2}$ ineh, the mechanieal advantage is $3 \div \frac{1}{2}$ $=6$. Where scissors present a form like that of Fig, 22, we have only to look at the small terminal blades

Fig. 22. and compare their relative movement with that between the thumb-ring and fingel-ring A and B. We need not concern ourselves with the intermediate linkage. In mouthstretchers the blades A and B are movel asunder by pusining up a plate C , which is propelled ly a serew 1) : the screw exerts a great pressure upon the plate C ; but the small movement of C as eompared with the movements of A and B eanses the mechanieal advantage of the screw largely to disappear, so that the instrinment is not as formidable as it looks. In dissecting forceps the point of the blade moves more than the fingers do, and the grip on the stmetures seized is relatively lax; while with forceps of

Fig. 23. the ordinary kind, the grip by the short arms is firmer than the squeeze of the hands on the long arms. In stretchers, c.g. kid-glove stretchers, the short arms separate as the long ones are squeezed together: and the same principles
apply. Where pincers consist of hooks pulled through a tube, when they lave taken hold a very small mutual approximation of the hooks will correspond to a much greater pull through the tube; and the transverse grip of such appliances is very firm. Where a snaring-wire is pulled through a tube, the amount

Fig. 24. by which the wire is pulled through the tube is usually greater than the distance by which the wire cuts through the polypus ; and it is greatest, and the appliance accordingly most effective, when one of the two ends of the wire is fixed while the other is pulled through.

Activity.-The work done per second is called the Activity ; and this is equal to the product of the Force, acting or overcome, into the Velocity.

British and American engineers call 550 foot-pounds $(=7459,480050$, or in round numbers $7460,000000 \mathrm{crgs})$ per second a Horse-Power : they define it as 33,000 foot-pounds a minute. The cheval-houre of the lrench enginecrs is 75 kilo-gramme-metres or 7357,500000 crgs per sccond. But a horse could not keep up this rate of working: a good horsc can do about 436 foot-pounds per sccond. \AA labourer can do from abont 8 (lifting carth with a spade) to about 70 (treadmill exercisc, lifting his own weight). But during a spurt a man may do work at a rate far greater than lie can kcep up.

Examples.-(1) Let a man weighing 90 kgr . (say 14 st. 211 ss .) run upstairs rapidly, at such a rate as to gain height equal to 90 cm . (say 3 ft .) per sccond ; what will be his Activity? His W cight \times the Height srained per second $=(90,000 \times 981)$ dynes \times 90 cm . per sec. $=7946,100000$ ergs per secoud $=1 \cdot 065$ lorscpower. This is far more than a horse can kecp up, and is about serenty-six times what a labourer continnonsly lifting earth with a spade can sustain. The danger of over-strain to heavy people is thus obvious.
(2) In the railway train of 1. 14, what is the Activity if the uniform speed be 36 kilometres per hour? 'This speed is 1000 enn.-per-sec.; and the retarding force overcome is, as we saw, 490,500000 dyncs. The Activity is the work done 1 'riv second ; and this is crfual to lorce \times Velocity $=490,500000 \times 1000=$ $490500,000000 \mathrm{crgs}-\mathrm{per} \cdot \mathrm{sceond}=65 \cdot 8$ liorse- -10 wer . When the train puts on stean so that it legins to gain speed at the rate of $1 \frac{2}{2}$ ein.-per-sec. per second, the force exerted hy the engine is 757,166666 dynes, and at lirst the velocity is still 1000 $\mathrm{cm} .-\mathrm{per}$-second: so that the activity is at first 757,166666 ergs. per-second $=101 \cdot t$ horse-power. When the sjeed has come 1 p
to 54 kilom. per hour ($=1500 \mathrm{~cm} .-\mathrm{per}$-sec.), the force exerterl is still the same, but the activity is now Force \times Velocity $=$ $757,166666 \times 1500=113575,0000000$ ergs-per-second $=154{ }^{\circ 2}$ horse-power. When the engine ceases to urge the train beyond this speed, and contents itsclf with maintaining it, the retarding force falls back to 490,500000 dynes, and the activity is now $490,500000 \times 1500=735750,000000$ ergs-pcr-sec. $=98 \cdot 6 \mathrm{~h} .-\mathrm{l}$.

There are other units of Work and Activity, not the C.G.S., but others, based on the so-called Practical System of Electrical Units. These are the Joule $=10,000000$ or $10^{7} \mathrm{crgs}$, and the Watt $=10^{7}$ ergs-per-second. Onc British horse-power is thus equal to 746 Watts nearly.

Energy.-Work done in lifting a body can be restored on letting the body down again through suitable mechanism ; the body lifted possesses, in its elevated position, a stored-up Power of doing Work. This power of doing work is called Energy. Again, a rifle-bullet, if it be caught by appropriate mechanism, has, in virtue of its motion, a power of doing work through that mechanism ; and it also, therefore, possesses Energy. Energy of the former type, stored-up Energy, associated with Displacement, is called Potential Energy ; energy of the latter type, Energy associated with Motion, is called Kinetic Energy.

A body or a system of bodies possessing Potential Energy is in a condition of stress: work must be done upon it in order to give it this condition of stress; when so stressed a body continuously tends to move -or the component parts of a system of bodies always tend to move-so as to get rid of the potential energy in the shortest time and by the shortest path. Thus a body on a height always tends to fall, vertically if it can. The Potential Energy which a body placed at a height gives up when it falls to a lower position is exactly equal to the Work which would have to be done in order to raise it from the lower position to the higher.

Example.-A rock weighing 1000 kilogr. falls 100 metres: what Potential Energy does it sacrifice? This is the Weight
$(=(1000,000 \times 981)$ dynes $) \times$ the Height $(=10000 \mathrm{cmi})=$. 9,810000,000000 ergs.

On a smaller scale, the molecules or particles of a body may lave work done on them in order to effect relative displacement of them, and may tend in an analogous way to restore that work at the first opportunity, and resume their former relation to one another.

A coiled or stretched spring, a duantity of compressed air in an air gun, the bent bow of an archer, all possess Potential Energy and can do Work.

The Kinetic Energy of a moving body is (in ergs) equal to $\frac{1}{2} m v^{2}$, where m is the Mass (in grammes), and v is the Velocity (in cms.-per-second).

Excomple.-If a rock weighing 1000 kilogrs., falling freely from a height, reach the ground with a velocity of 4429 cms.-per-second, what is its Kinetic Energy just before tonching sround? It is $\frac{1}{2} m v^{2}=\frac{1}{2} \times 1000000$ grammes $\times(4429)^{2}=$ $9,810000,000000$ ergs.

Since the Kinetic Energy depends on the square of the Velocity, a projectile moving with doubled velocity can bury itself forr times as deeply in earth as one of the same weight moving with single velocity: it then does four times the Work.

Kinetic Energy depends only on the actual Velocity, and on the Mass: and it does not depend on gravitation or on the direction of motion.

The Kinetic Energy which a falling body açuires through falling down is equal to the Potential Energy which it sacrifices during its fall ; so that the energy is not lost or destroyed; it las only changed its form and become kinetic instead of potential.

Example. - In order that an olject may, on falling freely, acquire a velocity of 4429 cm .-per-scc., it must (by equation 3 of 1. 11) fall through a height of 10000 cm . This comects the last two examples, and shows that they refer to the same falling rock, and that the potential enorgy at the height is equal to the kinetic at the end of the fall.

At each and every intermediate point during the fall of an object, the sum of the potential energy not yet lost, and that of the kinetic energy already acruired, is equal cither to the original potential energy or to the final kinetic energy.

When the body strikes the ground its motion is arrested: it no longer possesses kinetic energy : but still the Energy has not disappeared: it has assumed otlier forms ; it has become converted into Heat, into the energy of a flash of Light, or into that of Sound ; and the sum of these different forms of energy remains equal to the quantity of Potential Energy sacrificed by the falling stone.

A man ascending a staircase gains potential energy: but in his doing this, his muscles do work, and according to Hirn his body is perceptibly cooler for a moment, that is, until the excitement of the circulation canses him to become warm again, which occurs almost immediately. When he descends he sacrifices potential energy, and according to Hiru this has a perceptible effect in warming lis body: the potential energy lost has reappeared in the form of Heat.

When a plant is shone mpon by the sun, or the light of day, it absorbs Energy in the form of Light and Radiant Heat: part of this energy it expends, by means of its chlorophyll, in breaking up carbonic acid and forming less highly oxidised substances; and that energy will be restored when these substances are again completely oxidised, as when they are burned by fire, or by the slower process of oxidation which takes place on putrefaction, or within some animal which has fed upon the 1lant.

Energy is thus capable of assuming different forms, but it cannot be destroyed : and this is the doctrine of the

Conservation of Energy.

It may assume, and always tends to assume, a form which may be of no use to us; namely, that of uniformly distributed Heat. In the working of a steam-engine a great deal of the potential energy which is liverated when the particles of the coal combine with the oxygen of the air is, as we say, wasted and lost, by escape of Heat to the condenser, by heating the air, and so on. We cannot recover that waste Heat and, as it were, it slips from our grasp: but though it has become useless to us it is not destroyed ; it still exists somewhere, warming the Universe at large.

When a railway train has the brakes put on, and the train is being brought to a stand-still, the train is losing its Kinetie Energy : that kinetie energy beeomes converted into Heat, and is presently dissipated as the brake cools down: but the Heat is not destroyed, though we cannot reeover it again.

In every phenomenon with which we are acpuainterl there is some transformation of Energy into this relatively useless form ; and this is the doctrine of the Dissipation of Energy.

Rotation

A body may be caused to rotate round a point within its own substanee, as the bar in Fig.

Fig. 20. 25 rotates round the point O ; or it may rotate round a point outside its own substance. In

Fig. 25. Fig. 26 the rod AB has moved into the position $A^{\prime} \mathrm{B}^{\prime}$ ' by rotation round the external point O, which is similarly situated with respect to both $A B$ and $A^{\prime} B^{\prime}$.

Hore generally, a body rotates round some axis, either passing through its own substanee or not; and rotations may be compounded, as in the movements of the eyeball under the aetion of the different museles, eaeh of which tends to rotate it round a particular axis. If there be, as there is in the ease of the cyeball, a single point throngh whieh all these axes pass, that point is ealled the centre of rotation. The result of the composition of rotations round different axes is a single rotation round a resultant axis.

The rotational analogue of Translational Displacement along a linear path is Angular Displacement. In Figs. 25 and 26 the rod has turned through an angle AOA^{\prime}, and this angle is the measure of the Angular Displacement.

Angular displacements are measnred in radians, Fig. 5. A complete rotation ronnd 360° is a rotation through $6 \cdot 2832$ radians.

The analogue of Linear Vclocity is Angular Velocity, measured in radians-per-second; and the analogue of Linear Acceleration is Angular Acceleration, radians-per-scc. per second.

The rotational analogue of Mass in translational kinctics is a quantity called the Moment of Inertia. For a single particle rotating round an outside axis or centre of rotation, this is $m r^{2}$, where m is the Mass (in grammes) and r the Distance of the particle from that centre. For a solid body it is the sum of all the ($\left.m r^{2}\right)^{\prime}$'s of all the particles : and it needs mathematical calculation to find what this sum is in particular cases. But this sum is always definite, whatever the form of the body and wherever the axis of rotation may bc,

Suppose we took a given mass, say a disc, and spread it out into a thimer disc, so that while the mass m romained the same, we increased the average value of r, the distance from the centre of rotation: by doing this we wonld increase the Moment of Inertia; and from the rotational point of view this would be equivalent to making it more massive, through making it more unwieldy, more difficult to rotate.

A singular example of this is furnished by the movements of a cat while falling. As is well known, a cat always lands on her feet if she have sufficient space in which to turn before reaching the gromnd. When she falls, back downwards, she brings her forepaws close to her ears and spreads her hind legs apart: she thus renders her hindquarters unwieldy: then she gives her vertebral columu a twist: in consequence of this, her forequarters rotate in one direction and her hindquarters in the opposite direction ; but the hindquarters, being relatively nnwieldy, do not rotate as much as the forequarters do, and the forepaws are turned into a position beneath the animal. Then she spreads out her forepaws, thms making her forequarters unwieldy, while she brings her hindquarters together, stretching her legs out behind her ; she now gives her vertebral column an opposite twist: the result is that while the now more unwieldy forequarters rotate comparatively little, the hind-legs are rotated into position. Now all the legs are under the animal, and she lands on her feet.

The analogue of Linear Momentum is Angular Momentum, the product of the moment of inertia into the angular velocity. This, like linear momentum, tends to remain uniform, except in so far as the motion is retarded by Friction.

Hence if whirling water be brought from a circumference towards the centre, as the water approaches the contre the radins diminishes, and therefore the Moment of Incrtia also diminishes; lut since the Angular Momentum remains the same, the Angnlar Telocity must inerease; the water therefore whirls more rapidly. This may be seen in a toilet basin while emptying itsclf after the withdrawal of a central plug.

In Rotational Mechanics the analogue of Force is Torque or Moment. Let the force F be applied at A, and let the point round which rotation can be effected be O; the Torgue or Moment, tending to produce rotation round O,

Fig. 2 \% is the product $F \times A O$, where F is measured in dynes and $A O$ in cm . ; i.e., the Torque $=$ the force \times the distance from the point of rotation.
Fig 28.
If the direction FA be not at right angles to the line OA, the Torque is the product of the force F into OA', the shortest distance between O and the line FAA' (Fig. 28).

If the Force be constant in direction, this product will diminish in amount as the body turns from the position $O A$ to the position OE. At Λ it is $\mathrm{F} \times \mathrm{OA}$; at B it is $\mathrm{F} \times \mathrm{Ob}$; at C it is $\mathrm{F} \times \mathrm{Oc}$; at E it is nothing. Hence, for example, the forearm moves with the greatest readiness at the middle of flexion. In order to maintain a maximum turning power, the force applied must be kept changing in direction, so as to be always at right angles to the bar turned, or to the shortest line between the point moved and the centre round which it is moved.

As a Force is the product of the Mass into the

Fig. 20. Acceleration, so a Torque is the product of the Moment of Inertia into the Angular Acceleration.

If there be no Translation accompanying the rotation, the reaction or pressure at the point or hinge 0 must

Fig. 30. be equal and opposite to the force F, Fig. 30 , but it is not in the same straight line with it.

Examples. -The triceps muscle pulls the olecranon proeess baek at the elbow-joint; the weight of the head eauses the head to nod baekwards or forwards, as the case may be, on a transverse axis at the oceipito-atlantoid joint.

Two equal and parallel oppositely-direeted forces, not in the same line, form a couple, as in Fig. 30. The torque of a couple is the mroduct of either Force F (in dynes) into the Distance AO (in cms.) between the points of application of the two Forees which make up the Couple.

This Torque is the same round whatever point it may be taken; but the Moment of Inertia of the body acted upon is not the same with regard to all axes of rotation; therefore the other term of the product which measures the Torque, namely, the Angular Acceleration, is not the same when the body is pivoted on different points. The least moment of inertia, the least nnwieldiness, is that round the centre of mass ; and a body aeted upon by a couple tends to rotate, of its own accord, round its centre of mass. But round that centre of mass it tends of its own aceord, onee it is set a-spinning, to rotate round the partieular axis which presents the greatest muwieldiness, so as to send the bulk of the mass out to the greatest distance possible. Thus the earth rotates round its shortest axis.

To produce rotation a couple is necessary ; but one of the terms of the couple may be the Reaction or Pressure on the linge or axis of rotation. To prevent rotation a second Couple is necessary. In the lever of the first order, Fig. 31, a weight 12 at

Fig. 31. A tends to produce rotation round the fulcrum at F ; the Couple consists of the downward Weight 12 at A and the upward Resistance, 12, of the
fulcrum at E . Opposed to this is another Couple, 4 at B and t at the fulcrum. Together, the upward reaction of the fulcrum is 16 , and the Pressure upon the fulcrum is 16 . If the moments of the two couples, the opposed Torques, be numerically equal there will be no rotation: the lever is balanced when AF:BF::4:12, so that the product $12 \times \mathrm{AF}=$ the product $4 \times \mathrm{BF}$.

If we invert the figure and suppose a heary mass, say 16 legr., at F to be borne on a stick by two porters at A and B , we see that the porter at A has to carry 12 kgr . While the porter at B has to bear the weight of only 4 kgr.

When the Forces applied and the Lengths of the arms are adjusted so that the Moments round F are equal, the lever is balanced. Any excess in either of the forces applied will then overcome the other force applied. When movement occurs, the work done by the one weight in descending is equal to that done in pulling up the weight lifted.

The common balance is a lever of the order just described. It lies even when the Moments on both sides of the suspension are the same. For this, if the effective arms be equal, the Masses counterpoised must be equal. If they be not, the apparent weight of the body weighed will be erroneous.

For example, let the one arm be 20 cm . in length and the other $20 \cdot 1 \mathrm{~cm}$. If 20 grammes be put at the end of the 20 cm . arm, the moment is $400 \mathrm{grm} .-\mathrm{cm}$; ; to produce an erpual moment in the other arm, the mass put in the seale will be $\frac{100}{20} 0=19 \cdot 9$ grammes.

The Principle of Moments is illustrated by several forms of Levers, which are classifiel in tinree orders :
I. Fulerm between the Force applied and the Resistance overcome. A erowbar, a handspike, ordinary pliers or forceps, scissors or shears, a poker, a dentist's lever, an American elothes peg.
II. Resistance between Fulerum and lorce: nutcrackers, oar of a boat (water practieally fixed while the hoat is pushed along), elaw-hammer used for extracting mails, wheelbartow.
III. Force between Fulerum and Resistance: dissecting forceps, sugar-tongs, coal-tongs, the bones of the body. The muscles must act on a point of the bone fairly near the joint, else they wonld not pack within the skin: and they lave aecordingly to exert a greater pull upon the hone than the long arm of the lever can effect. Thas the contraction of the bicejs could, if applied directly, lift about six times the weight that ean be lifted in the pahn of the hand: but the hand has a compensating range of movement.

Wheel and Axle.-A form of continuous lever in which again the moments round the axis of rotation must be equal if the instrument is to stand at rest, and one of the
 moments must be somewhat greater than the other in order to indnce rotation. In the capstan and the winch the principle is the same. In the bell-crank, Fig. 33 , the moments of the force A and
Fig. 32. that of the resistance B, round the

Fig. 33. hinge 0 , will be equal when the crank is in equilibrium ; and the one will be a little greater than the other when the crank is in movement.

In all these cases the ratio between the Force exerted and the Resistance overcome is the inverse of the ratio between their respective Distances from the fixed point or fulcrum round which rotation takes place, or tends to take phace.

In many cases mechanical power is not the desideratum, bnt amplitude of movement: for example, in the spaygmograph, in which the long arm of a lever of the first order has a writing-point at its tip and is used to record the movements of the pulse, which actuate the short arm. The pen as used in writing is a lever of the third order, and the point of the pen moves more than the fingers do. Ross's lever for measuring the thickness of microscopic cover-glasses is a lever of the third order, beneath which the cover-glass is inserted near the joint or fulcrum, and the amount of displacement at the distant end of the lever is measured on a scale.

As the kinetic energy of a boly moring linearly is $\frac{1}{2} m v^{2}$, so the kinetic energy of a rotating body is lalf the Moment of Inertia into the square of the Angular Telocity. A flywheel in motion thus has Kinetic Energy, with some of which it parts when the machinery tends to slacken, and which increases in amount when the machinery tends to race: the flywheel thus acts as a store or reservoir of Energy, and tends to equalise the speed of ruming of the machinery.

Rotations and Translations can be compounded wills
one another ; and the most general clange of prosition of a body can be resolved into one translation and one rotation.

Deformations or Strains

When a body is deformed, its particles undergo relative displacement.

The principal forms of Deformation are Shrinkage or Dilatation, Lengthening or Shortening, Shear, and Twist.

In Shrinkage or Dilatation, and in Shortening or Lengthening, the particles of the body are crowded together, or else the intervals between them become larger.

Shear is shown by Fig. 34, in which successive layers of the substance slip over one another like the leaves of a book pressed out of shape.

In Twist or Torsion, one end of a bar is made to rotate while the other is fixed : intermediate layers rotate through angles proportional to their distances from the fixed end.

Fig. 34.

If a body after being deformed or strained endearour to resume its original form or dimensions, it is said to be elastic. An elastic body will, if deformed and left to itself, oscillate or vibrate ; and we shall next consider Oscillations and Vibrations, begimning with those of a single particle, or of a small body which may represent a particle.

Oscillations and Vibrations

If we have a very long pendulum, a small bob, say a bullet, suspended by a cord, say a dozen feet long, and if we set this oscillating through a very small arc, say an inch or so, the path traversed is so nearly a straight line that we may assume it is a straight line. We obsurve: (1) successive swings are accomplished in equal times; (2) the bols travels to equal distances on each
side of the midpoint or point of rest; (3) as it passes the midpoint the bob travels most rapidly, and granlually slows off as it nears the end of its swing. Two swings, one back and one fore, make a conplete oscillation. The time taken to effect two swings, or one complete oscillation, is the Period of the oscillation : and the periorl of a seconds pendulum (eight-day clock) is two seconds. The number of oscillations per second is the Frequency of the oscillation ; thus the frequency of oscillation of a seconds pendulum is $\frac{1}{2}$. The distance between the midpoint and either of the extreme positions (not the distance between the extreme positions) is the Amplitude of the oscillation : thus, if the whole path of the bob cover a distance of 1 inch, the amplitude is $\frac{1}{2}$ inch.

Motion of this kind, if in a straight line, is called Simple Harmonic Motion, and it may be rendered

Fig. 35. more intelligible by the use of what is called a circle of reference, as in Fig. 35. Assume a particle situated at the point A to start on a journey in a circle round O, and assume that its speed in that journey is uniform. Let it, in equal periocls of time, reach the successive points b, c, o, c, j, g and H, and so on. From these points draw lines perpendicular to the line AH ; we thus find the points ABCDOEFGH. These are the points reached, in successive equal intervals of time, by a particle moving along the line AH. in Simple Harmonic Motion : and on the way back it reaches, again in erqual intervals of time, the points GFEODCBA. A complete oscillation, once back-and-fore, thus corresponds to one complete journey round the Circle of Reference. Inspection of the figure shows us that near the middle of the comse the spaces traversed in given intervals of time are greater than they are towards the end of the course: that is, the particle is moving with the greatest velocity at the instant when it is passing the midpoint. When it has passed
the midpoint it eontinuously slows down : it is subject to a Retarding or negative Aceeleration ; and it ean be shown that the eorresponding retarding force is, at any and every point of the path, proportional to the displacement, that is, to the distance between the moring particle and the midpoint O. The force tending to bring the particle baek to O thus increases as the distanee from O increases: when the particle is at H or at A this force is at its naximum: when the particle is at O there is no force palling it towards O, but the particle has momentum and overshoots the mark; its kinetic energy is gradually transformed into potential energy as the partiele reeedes from 0.

In every case where the Force tending to bring a partiele back to O is thus proportional to the Distanee of that particle from O, the particle will describe Simple Harmonie Motion : and if the particle take a certain time to oscillate in simple harmonie motion with a narrow range of araplitude, it will take exactly the same time to oseillate with greater amplitude, provided the amplitude is not too great. Simple Harmonie Motion occurs in elastic bodies when they vibrate after being deformed ; and this prineiple underlies the phenomena of sound, of light, of radiant heat, and of some parts of the science of electricity.

We may compound Simple Harmonic Motions. To illustrate this let us fit up a Blackburn's pendulum, as shown in Fig. 36. A cord of sufficient length is passed througl two holes in the horizontal cross-bar and also through a pegs P, whieh may be turned so as to pull in or let out more or less cord. Both ends are then passed through a ring R,

Fig. 36. which may lee slipped up or down, and they are connected with a heavy bob P , which enntains sonle santl. The bol, drops this sand as it travels, and
thus leaves its trail. If the bob B be moved parallel to the cross-bar and let go, it will swing from R as a centre : if B be moved at right angles to the cross-bar and let go, the whole will swing from the cross-bar ; but if the bob be pulled obliquely and let go, both these motions will go on at the same time. Though adjusting by means of the peg P and the ring R we may give the two motions, which are at right angles to one another, any desired ratio of frequencies ; and we may study the forms of the corresponding lines of sand. If the ratio be exactly as 1 to 2 , that is, if the one oscillation be twice as frequent

Fig. 37. as the other, the trail is of a form such as is shown in Fig. 37. If A be the starting-point, once up and down this curve corresponds to right to left and back. In this case the curve is a parabola. With other ratios the figures are different; and they present a series of beautiful curres.

If the ratio be not exactly as 1 is to 2 , the bob does not trace and retrace its track, but covers the baseboard with sand. The track gradually changes its form, and goes through a series of modifications ; but the curve regains its original form when one of the oscillations has gained one complete period on the other. Thus if the ratio be $100: 201$, the curve will regain its form when the slower oscillation has been effected 100 times. If the ratio be 101:200 it will do so when the slower oscillation has been effected 101 times.

Suppose that we take a pendulum, free swinging and free to swing in any direction, and that we displace its bob say to the east: hold it there: then throw the bob to the north, and watch what happens. The bob moves in an ellipse, and may by a little management be made to more in the particular form of ellipse known as a circle. If it move in an ellipse, it moves more widely north-andsouth than it does east-and-west, or else rice versict: if its motion be circular, its north-and-south movement is equal
to its east-and-rrest movement. But, olserve, in the case of the circular movement, that when the buls is say at the point E, it is at the middle of its north-and-south movement when it is at the end of its east-and-west movement. As regards east-and-west, it is on the tumn: as regards north-and-south, it is still in full swing. The latter movement is therefore $\frac{1}{t}$ period in arrear of the

Fig. 3s. former. Circular movement is the result of the composition of two equal Simple Harmonic Motions which are at right angles to one another, and which differ by $\frac{1}{ \pm}$ period in their stage of progress or their "phase."

Suppose a body is moving in a Circle, and that we could cut out one of the trro simple harmonic motions (S.H.M.'s) which make up its circular motion, we ought

Fis. 3 ? to have the other S.H.M. left. This we can actually accomplish. Suppose we have a wheel uniformly rotating, and that on this wheel there is a perg: this peg runs in a transverse slot in a frame which runs in guides. As the wheel rotates uniformly the frame will travel up and down: and it will execute a S.H.M. Conversely, if we could work the frame in S.H.ML, we would make the wheel go round uniformly: and the piston and crank, acting on a steam-engine driving-wheel, form a sort of an approximation to this ideal.

A Simple Harmonic Motion in a line APB may be resolved into two S.H.M.'s at right angles to one another. The line $O B$ is the diagonal of the

Fig. 40. parallelogram YX ; and OX, OY represent the respective amplitules of the oscillations in the liness SX^{\prime} and YY'. If loy any means the S.H.M. in the
line AB were so hampered that no motion could occur in the line $\mathrm{X}^{\prime} \mathrm{X}$ or parallel to it, the S.H.M. in the line $Y Y^{\prime}$ would not be interfered with, and would remain ; but the rest of the movement would be extinguished.

If we carry a swinging pendulum through the air at a uniform rate in a direction at right angles to the direction of its oscillations, the actual path of the bob soroonorors will be a wavy line. If the pendulum be

Fig. 41. carried slowly the path will be as in Fig. 41 ; if it be carried rapidly, the path will open out into a less wavy line (Fig. 42). We may make a pendulum draw this kind of line for us if it be provided witl a sand-dropper or a writing-point, not by moving the pendulum

Fig. 40. itself, but by drawing a piece of paper at a uniform rate under the bob. In the same way a sounding tuning-fork, with a little writing-point attached to one of its prongs, will write on smoked glass, drawn past the tip of the writing-point, a wavy line like Figs. 41 or 42 , according to the speed with which the smoked glass is made to run. And this not only shows that the tuning-fork is in a state of Vibration, but also enables us to find the number of oscillations it makes per second, by counting the mmber of alternations in the wavy line which is described during a known time.

The curved line thus drawn is the "Harmonic Curve," or "Curve of Sines." It is also called the Simple Vibrational Curve : and it presents itself in all parts of the study of vibrations or oscillations.

Waves.-If we have a very long string, of which one end is attached at a distant point, say to an opposite wall, and if we give it a few rapid jerks up-and-down at the free end, we see waves of transverse vibration ruming along the string. If the string be thin and flexible, the waves have exactly the outline of the Harmonic Curve. Let us draw one of these waves, from A to B (Fig. 43). The slope at A and B , and at the inter-
mediate point (', is steeper than it is elsewhere ; and the slope gradually falls off as we come from A to D), or from B to E, so that at D and E there is no slope. The wave-form is repeated behind A and in front of B. The points D) and E are farthest

Fig. 43. from their original positions d and c : and the distance $\mathrm{D} d$, or the distance $E e$, is the Amplitude of the oscillation. Any given point in the string executes a simple harmonic motion across the original line of the string; and the wave-form travels along the string. Observe that it is only a form or shape that travels along the string: each particle simply oscillates in the immediate neighbourhood of its original position.

The distance between the two similar points A and B is called the Wave-Length : and on the analogy of waves of the sea, if the point D be called the crest of the wave, E is called its trough.

If the wave travel with a velocity $\nu \mathrm{cm}$.-per-sec., and if the ware-length be $\lambda \mathrm{cm}$., n waves will pass any given point per second ; the equation which gives the relation between these is $\nu=n \lambda$.

Suppose further that in a string, along which a waveform travels in this way, another wave-form liad leen inducel by some means to travel simultaneously with the former. Let the two

Fig. 44. wave-forms for one complete wave be represented by the curves a and b (Fig. 44) ; then in order to find what happens we hive, for every point such as f, to add together the displacements in the curves a and b : we thus find a series of points such as F, which together make a new curve c, and this again is a harmonic curve. If the two curves are opposed in their phase, the curve : corresponts
to the differences between them; and if the two waves be of equal amplitude and opposed in phase, the result will be rest. Two waves may thus neutralise one another.

The same principle of addition of the displacements, for each point of the string, may be carried out to any extent. Suppose we have five waves running along the string, with periods which are in the proportions $1: 2: 3: 4: 5$, so that the same length of string which contains five of the most rapidly recurring waves contains one of the slowest, two of the next, and so on. On adding the displacements for each point we find, as one result, that the string assumes a form which is apparently most complex,

but which is the same both erect and upside down, and which also recurs in front of B as well as behind A.

This form, since it recurs at equal intervals of time, is said to be "periodic"; and "Fourier's Theorem" is that any vibrational motion or form whatever, provided that it be periodic, can be resolved into simple oscillations or waves, which occur simultaneously, and whose frequencies bear a simple numerical relation to one another.

In some cases we have, instead of transversal vibrations, Longitudinal Vibrations. In these the particles, say of a rod, are not displaced transversely, but back-andfore along the direction of the rod. Here again the harmonic curve comes in, not as showing the form assumed by the rod, but as showing the Amount of Displacement mondergone hy each particle of it. In Fig. 46 if the rod AB be in longitudinal vibration, of which one
wave-length only is shown, and if upward portions of the curve indicate displacements forwards while downwarl portions of it indicate displacements backwards, the amounts of displacements would be measured by

Fig. 46. such lines as $d \mathrm{D}, \mathrm{eE}$, and the real positions of the particles originally at d and c would be at $\mathrm{D}^{\prime}, \mathrm{E}^{\prime}$. Hence the particles of the rod are crowded together towards C and separated away from A and from B, and there are thus alternate points of maximum Compression and maximum Rarefaction. The particles originally at F and C have undergone maximum displacements ; but the particles originally at these points have, in their new positions, undergone no separation from or approximation towards one another.

In a membrane which is uniform in all directions, the waves from a point of disturbance are mostly trans-

Fig. 47. verse to the surface, and rum from that point in concentric circles. The front of the wave is thus always circular in form, and the Direction of Propagation of the wave is at right angles to the wave-front.

In a tridimensional substance, if that substance be similar in all dircetions, the waves from a point of disturhance travel in concentric spheres ; and the direction of propagation of the wave is again always at right angles to the wave-front. Each point in the wave-front acts as the centre of a new disturbance ; and the aggregate effect is the formation of a continuously propagated Wave-Front.

Fig. 4S.

When a broarl Wave-Front meets an aperture there are thrce cases: (1) Fig. 48, the wave-length is great in
comparison with the aperture, in which case the Aperture itself aets as a Centre of Distubance, from which a wavemotion spreads ; (2) Fig. 49, the wave-

Fig. 49. length is very small in comparison with the aperture, in which case the wave is continued only within the limits imposed by the aperture, as shown by the figure, and does not spread laterally; (3) intermediate conditions, in which there is some spreading of the wave-front beyond the limits indicated by Fig. 49.

If a wave-front, limited as in Fig. 49, be concave as in Fig. 50, it will first bear down on a point F, and then, after passing through that point, will diverge from that point as from a centre. Such a point is called a Focus.

If we attend to the directions in

Fig. 50. which the wave-front is propagated, we may make diagrams to represent these directions in the eases of Figs. 49 and 50. These diagrams are shown in Fig. 51. The lines whieh represent the directions of propagation of the wavefront are called Rays. It is in many ways more convenient to study the relations of these rays than it is to follow up the Wave-Front itself : but the use of this deviee implies that the Wave-Length is very short in comparison with the actual breadth of the wave-front.

Reflexion of Waves.-When waves impinge upon a smooth surface, the waremotion may be refleeted or turned baek. If a wave diverge from a point O before striking, it diverges after reflexion us if it had eome from a point I. Each lay

Fig. 52. is refleeted in such a way that the "angle of inci-
dence" i is equal to the "angle of reflexion" r (Fig. 53).

If a Plane Wave-Front (one in which the "rays" are parallel to one another) meet a parabolic mirror placed squarely opposite to it, the rays, after reflexion, all converge upon and pass through
 a single point F, from which they afterwards diverge as from a single centre ; and conversely,

Fis. 53. if the waves at first radiate from F they will, as they recede from the mirror, present parallel rays and a plane wave-front (Fig. 54).

If the same plane wave-frout encounter a spherical mirror, the result is approximately but not exactly the same. The rays reflected from the outer part of the mirror cross one another too near the mirror ; but those very near the axis of the mirror cross one another in the immediate neighbourhood of a point F, which is half way between the surface and the centre of curvature, C, of the mirror. From this two consequences follow: (1) there is no

Fig. 55. true focus for all the rays ; (2) there is a double curved line called a caustic, Fig. 56, along which all the foci for all the rays lie. Along this Caustic the reflected wavemotion will be most energetic, and will be - c most concentrated at or near the tip F; and the tip F of this Caustic is called the Focus of the Mirror. If we take a strip of bright metal, bend it into a curve, and hold it upon a piece of paper in front of the sun, we shall see the C'anstic curve, produced by reflexion of the waves of sunlight npon the paper.

Refraction of Waves.-If a wave enter a medium in which it travels more slowly, one part of the warefront may be retarded is it enters,

Fig. 57. and may swivel round before the rest of the wave-front has arrived. Fig. 57 (tt) shows such a wave-front in the act of entering the hampering mediun through a plane surface: Fig. 57 (b), shows the same wave-front after it has entered the medium. It is deviated from its former direction; it is "refracted." In the same way a line of soldiers, walking obliquely into a heavy field, tends to turn its front.

The relation between the Angle of Incidence i and the "Angle of Refraction" r is explained by Fig. 58. If the angle of incidence be i, from the point 0 where the ray strikes the glass we draw a circle, cutting the incident ray at I . To the line NN^{\prime}, which is at right angles to the refracting surface, we draw In parallel to that surface; then we measure off a line $\mathrm{R} n^{\prime}$ which bears to I 2 the same ratio as the velocity of wave-propagation in the second medium bears to that in the first; and, lastly, we contrive to find a

Fig. ${ }^{5}$ S. direction for the line OR, which will emable $\mathrm{R} n^{\prime}$ to be fitted in, parallel to the refracting surface, in the way shown in the figure. $O R$ is the direction of the refraeted ray. The ratio ($\mathrm{I} n \div \mathrm{R} n^{\prime}$), which is a number, is called the Index of Refraction of the second medium

Fig. 59. with respect to the first.

For each Angle of Incidence there is a corresponding Angle of Refraction: and when rays from a centre S strike a hampering medium they are severally so refracted that the whole wave-front (though really lyperboloidal in form) is very nearly spherical in form, with its centre S^{\prime} behind the somree S, at a distance $S^{\prime} A=S A \times$ the Index of Refraction: and the ware
therefore travels in the second mediun approximately us if it lad come from the point S^{\prime}.

When these refracted lays regain the original medium through a second surface, each of them regains its original direction, if the second surface be parallel to the first: but the rays are not all direeted as if from the original point S ; they travel as if from a caustic eurve whose tip is at S . The emergent wave-firont is not quite spherical.

If a plane wave-front (parallel rays) strikes

Fig. 60. a convex spherical surface of the hampering medium, it is made to converge, approximately, towards a point S^{\prime}, Fig. 60. If it strike a concave surface, it

Fig. 61. is made to diverge, alproximately, us if from a point S', Fig. 61. If we have a spherical wave made to pass in this way through two or more spherical surfaces of different media, there is always some point from which the emergent ware-front seems to diverge, or towards which it really does eonverge, as the case may be; in both cases approximately only. This is the principle of the action of lenses in Optics.

When a ware is refracted there is generally a part of its motion refleeted at the same time: but whenever a reflected wave is produced in a denser medium at the bounding surface of the less clense medium, there is loss of half a wave-length, so that an impinging eondensation is relleeted as a rarefaction, and vice versâ.

Stationary Vibrations. - A eord may lue set in transwerse vibration between fixed extremities. It vilorates as a whole: and its form as it ribrates is that of half a wave as its unper limit of diss

 tortion, and the other half of a wave as jt: lower limit. The frequency of the uscillation is such that a wave of
the same frequency, ruming along a free string, would have a Wave Lengit equal to twice the length of the fixed string.

If the midpoint of the string be held fast, the string vibrates in two segments, oppositely distorted: and the Frequeney is twice as great as at first. If
 a point one-third of the length from the
Fig. 63. end be held fixed, a point one-thirld of the length from the other end assumes a position of rest, and the string vibrates in three segments, oppositely distorted and pivoting round two stationary points. Λ string may similarly be made to vibrate in 4,5 , ete., such oseillating segments or "Loops" equal in length, oppositely dis-

Fig. 64. torted, and pivoting round stationary points or "Nodes"; and the length of eaeh loop is hatf the wavelength of the corresponding oseillation.

A rod, or a string, can vibrate longitudinally. If it be fixed at both ends it obeys the same laws as a string vibrating transversely: it can have Nodes and Loops in the same way : and the wave-lengths of the various undulations into which it may enter are $\frac{2}{1}, \frac{2}{2}, \frac{2}{3}$, $\frac{2}{4}, \frac{2}{5}$, ete., times the length of the rod.

If it be free at both ends, with the centre fixed, the numerieal ratios are again the same; but the rod lengthens and shortens at the free ends, so that each free end is always the centre of a loop (Fig. 65).

If it be fixed at one end only, it is as if we took half of Fig. 65; the wave-lengths of the respective longitudinal vibrations are $\frac{4}{1}, \frac{4}{3}, \frac{4}{5}$,

Fig. 6b. $\frac{f}{7}$, ete., times the length of the rod ; and as before, the free end of the rod is always the centre of a Loop: but no oseillation whieh would tend to set the fixed end in motion can be present: for whieh reason the $2 n d, 4$ th, 6 th, etc., vibrations are necessarily absent.

Interference of Waves takes place between waves from different sources. If in Fig. 67 we represent crests of waves crossing one another by dark lines, and the intervening troughs ly dotted lines, we may mark by black circles the spots where crests coincide or concur with crests, or troughs with troughs, and by
plain circles the spots where crests of the one wavesystem are thwarted by the troughs belonging to the other. Where crest meets crest, or troughs troughs, there is a double amplitude: where crests meet troughs there is approximate quietude. We see that there are altemate lines of black circles and lines of plain ones. Along the former of these lines there is double

Fig. 67. movement: along the latter there is approximate rest. If we trace this out in a large diagram, we find that when two points, A and B, Fig. 68 , act as sources of wave

Fig. 6s. motion, there are alternating lines or fringes of alternate rest and motion at a, b, c, d, etc. The smaller the wavelength, the nearer to one another will the fringes be.
If we take a wave-front diverging from O and passing through an aperture $A B$: if the wave-lengths be very small in comparison with the lreadth of $A B$, we shall find, on similar principles, that at a point P well to one side of the rays OA or OB, the effect of the wavefront is nil: for the different parts of the wave-front act as centres of disturbance, and as they are at different

Fig. 69. distances from P , the waves from these different centres, even if they had been formed, would interfere with one another so as to produce Rest at that point.

At the same time the points A and B act as centres froducing waves, which in the case of Light interfere with the sharpness of outline of the bright dise formed on a screen beyond the aperture AB.

Diffraction-Grating.- If a plane wave-front strike
a gridiron-structure, represented in section in Fig. 70, there will he waves transmitted directly through; but there may also be waves sent in other directions, as shown.

These directions make eertain angles δ^{\prime}, $\delta^{\prime \prime}, \delta^{\prime \prime \prime}$ with the original dircetion of propagation: and these angles are sueh that $\sin \delta^{\prime}=n \lambda$, $\sin \delta^{\prime \prime}=2 n \lambda, \sin \delta^{\prime \prime \prime}=3 n \lambda$, etc., where n is the number (integral or fraetional) of grids per em., and λ is the wave-length in cms. There is no angle whose sine is greater than 1; and henee if any of the products $n \lambda$, $2 n \lambda, 3 n \lambda$, ete., be greater than 1 , the corresponding deflected waves are not formed at all: for example, in the figure, as drawn, there eannot be a fourth such direction.

The energy of Vibration and Wave Motion is equally divided between the kinetic and the potential forms ; and it is proportional to the square of the Amplitude.

CHAPTER III

FRTCTION

Let us rest a mass m (say 1000 grammes) on a board T , and let us endearour, by pulling it by means of a spring-balance, to make it slide on the board. The spring is stretched out somewhat, and yet the block m is not moved. It will slide, but only when the spring-balance gives a certain reading ; let this be, say, 600 grammes. This is $\frac{3}{5}$ of the 1000 grammes in m .

Fig. 7].

The Coefficient $\frac{3}{5}$, as found by this experiment, is the Coefficient of Statical Friction between the sulbstance of which the mass in and that of which the table T consists.

The Total Pressure upon the table is 981,000 dynes ; the pull on the spring is 981×600 dynes: the latter is $\frac{3}{5}$ the former. Generally, the Pull on the spring which is required to start sliding movement is equal (in dynes) to the prorluct of the Coefficient of Statical Friction into the Total Pressure (in dynes) between m and T.

Let us squeeze m against T, as, for example, by a screw table-clip which embraces both m and T ; we thus increase the Total Pressure between m and T; the pulling force to be applied through the spring must still be equal to $\frac{3}{5}$ the increased pressure lefore there will be any sliding: and it must therefore begreater than before.

We may inerease the Total Pressure in another way, namely, by multiplying the surfaces. Take two pamphlets: arrange them with their leaves alternately interplaeed: the one can be pulled out of the other. If, however, a small weight be laid lupon them they eannot be pulled asunder without a very great elfort. The Total Pressure is praetically multiplied by multiplying the number of surfaees on whieh the same pressure aets.

Let us tilt up the table T of Fig. 71 until the mass m just begins to slide. There will be no sliding until the angle BAC becomes such that the ratio $\mathrm{BC} / \mathrm{AC}=\frac{3}{5}$, $A C B$ being a right angle. Upon the

Fig. 7. angle BAC depend the angles at whieh sand, heaps of grain, etc., ean stand.

If m be pressed upon T by a stiek, whieh is at first held vertical, and which is gradually inelined to the vertieal, sliding begins when the stick is inelined to the vertieal at an angle equal to the angle BAC.

Different substances have between them different Coeflicients of Statical Friction: and even between the same substances the coefficient depends also upon the condition of the surfaces: it is greatly redneed by lubrication, and it is somewhat increased by keeping the surfaces in contact for a long time.

The Total Friction does not depend at all upon the area by which m rests on T ; the pull upon the spring-balance must be the same in order to make m start, whether it rest on T by a large surface or by narrow runners only.

Friction is like a Force preventing sliding, and itself called into being by the effort to make the mass m slide ; but this preventing force, or Frictional Resistance, cannot exceed a certain maximum. For example, Frietion may prevent a microscope tube from sliding down by its own Weight merely, but we can orercome its resistance, and pull or push the tube up or down.

When a rope is tied round a post, it will not slip if it be held by a very slight force; and the security of knots and
bandages depends very largely upon the Statical Friction, which holds in check their tendency to pull loose or to slip.

Next, let the experiment of Fig. 71 be continued by keeping the block m sliding : it will be found that the reading of the Spring-Balance is now materially smaller, say 400 grammes only. This is $\frac{2}{\overline{3}}$ the weight of m; and thus we now have a new coefficient, the Coefficient of Kinetical Friction. It is thus easier to keep the mass m sliding than it is to start it.

Within wide limits the Coefficient of Kinetical Friction is the same - there will be the same tension on the spring-balance-whatever the speed may lue; but if the speed be allowed to become very small, this coefficient tends to increase.

Kinetic Friction is like a Force, tending to retard the sliding when once this sliding has been started: and this Retarding Force is constant, whatever, within wide limits, may be the actual velocity of movement.

The arrest of the foot at each step is, when the walk is glilling, an example of kinctic friction.

This Retarding Force is, numerically, equal to the moduct of the Coefficient of Kinetic Friction into the Total Pressure between m and T.

In the case supposed, this eoefficient is $\frac{2}{6}$, and the Pressure is the Weight of 1000 grammes $=981,000$ dynes; whence the Retarding Force $=392,400$ dynes.

This retarding Force acts, in the case snpposed, on a mass of 1000 grammes ; whence the retarding Acceleration ($=$ retarding Force \div Mass $)=392 \cdot 4 \mathrm{~cm}$. per-sec. per second. All problems of frictional retardation may be dealt with by using the ordinary equations for Accelerated Motion, p. 11, the value of the frictional negative acceleration being determined as just shown, and used in the formule.

The Pressure between the sliding surfaces may be produced by any means ; and if it be increased, as by clamping down a brake, the retardation increases.
E.cemple. - What must be the total pressure put on the brake in order to stop $\left(v_{t}=0\right)$ a train of 160,000 kilogrs. ($m=$

160,000000 grammes) rumning at 54 kiloms. an hour ($v_{0}=1500$ cms. - per-see.) within 1 kilometre ($s=100,000 \mathrm{~cm}$.$) ? 'I'he$ Retarding Λ ceeleration requived, $-a$, must linst be found. By equation (3), p. 11, $0=\sqrt{(1500)^{2}-200000 a}$, whenee $a=11 \cdot 25$ cm.-per-sec. per seconcl. But in railway work there is always a frictional Retarding Force equal to, say, $3 \frac{1}{2} 0$ the Weight of the train ; this Force is $\frac{1}{3 \frac{1}{2} 0} \times 981 \times 160,000000=490,500000$ dynes. There is, therefore, already a retarding or negative Acceleration of $\frac{190.500000}{100.000000}=3.065625 \mathrm{~cm} . / \mathrm{sec}^{2}$ What is wanted, then, is a supplementary negative Acceleration of $8.184375 \mathrm{~cm} .-1$ er-sec. per second, or a retarding Force of $160,000000 \times 8 \cdot 184375=$ 1309,500000 dynes. This Force is, as we have seen, also equal to the product of the Pressure into the Coefficient of Kinetic Friction between the rubbing surfaces of the brake. Say that between the wood and the iron this coefficient is $\frac{2}{\bar{c}}$; then the pressure must be 3273,750000 dynes $=$ the weight of 3,337156 grammes. If the rubbing area be small the pressure must be intense; if it were only 1 sq . cun. the pressure would have to be 3229 times the atmospheric pressure (which is 1,013663 (lynes per sq. cm.) : if 10 sq. em., 322.9 atmospheres ; if 1000 sq. cm., 3.229 atmos. ; if $3229 \mathrm{sq} . \mathrm{cm} ., 1$ atmo. Observe carefully that the Pressure which has to be applied is the Total Pressure; and that the pressure which must be applied per sq. cm. will depend on the rubbing Area of the brake.

If a vehicle run down a slope (Fig. 73), such that $\mathrm{AC} / \mathrm{BC}$ is equal to the Coefficient of Kinetical Friction, it will run at a uniform velocity without any propulsion; for the negative Acceleration due to Friction is then exactly
Fig. 73. balanced by the positive Acceleration due to Gravity, resolved in the direction $A B$.

The work done against Friction is the mroduct of the frictional resistance or retarding Force into the space traversed. When an engine takes a train uphill, it has to do lifting work as well as work against friction; and if it go up from B to A, in Fig. 73 , it has to do the work of lifting the weight of the train through the height CA plus that of overcoming the frictional resistance through a distance BA. The Energy expended in doing work against Friction is always converted into Heat.

Kinetic Friction thus always acts as if it were a
retarding Force; but it loes not exist unless and until there is an actual Velocity.

Of all forms of motion, rolling upon well-lubricated wheels is that which presents the least friction: in this case the coefficient of kinetical friction is much smaller than it is in the case of sliding.

At very high speeds or pressures the cocllicient of friction may differ from what it is within ordinary limits. For low speeds thick oils make the best lubricants; for very high speeds, thin oils or water.

When solids move in liquids at low speeds the law is the same as when solids move upon solids ; but at high speeds the Resistance itself tends to vary as the Velocity.

When oscillatory movements are subjected to Frictionalways proportioned to the Velocity, the oscillations are slower than they would have been in the absence of friction, and they continuously diminish in amplitude; but they will be executed always in equal times. If the frictional resistance be very great, there will be no oscillatory movement ; and the distorted or displaced body will simply return slowly to its normal form or position.

CHAPTER IV

MATTER

The "essential" Properties of Matter are :-
(1) Definite Quantity or "Mass" in each objeet.
(2) Indestructibility of Matter, so far as we know.
(3) Definite Quantity of eaeh Chemieal element. The chemical elements eamot, as yet, be transformed into one another.
(4) Matter made up of Molecules, or small particles.
(5) These moleeules mutually non-interpenetrable.

Hence Matter is said to be impenetrable ; and if we have, for example, a "penetrating wound" of the body, the penetrating weapon has gone between moleenles, not through them or into them.

The "general" properties of Matter are :-
(1) Inertia.
(2) Weight - the force of Gravitation upon Matter.
(3) Divisibility down to the molecular condition.
(t) Porosity.

The "contingent" properties of Matter are these which depend upon the particular kind of substance ruder consideration, sueh as Density, Colour, ete.

The "Ceneral" Properties of Matter

Inertia.-To say that matter is inert, or "has Inertia," is another way of saying that it will not move if at rest, nor cease moving if in motion, unless some force be applied to it. If it be in motion, in a given direction, it tends to continue in motion in the same direction ; if it be rotating it tends to go on rotating in the same plane in space. In the case of a moring body, friction is considered as equivalent to a Force.

Excomples.-It is diffenlt to set a heavy gate swinging on its hinges ; when in motion, it is diflieult to stop it. It is diffieult to pull up a railway train or a heavy van promptly. A rider may be thrown forward off his horse, if the animal stop abruptly under him; his body continues to move forward. If a horse abruptly stop or fall in front of a heavy waggon or eoaeh moving rapidly, the vehiele eomes on and rums mpon him. A hare alruptly moves out of her path, but the pursuing greyhound eannot at once stop or ehange his course and is carried past. When dust is shaken off a book, or snow is kieked off the shoes, the book or the shoes are set in rapid motion, and this rapid motion is abruptly stopped ; but the dust or the snow flies onwards. Water in pipes, set a-flowing and then suddenly turned off, may pour on so as to prodnee, with a jerk, a great pressure within the pipes. Mercury used in tubes for measuring variable pressure will often rmm forward, once it is in motion, and give readiugs whieh are too ligh.

When a man stands at the stern of a boat or the baek of a car, and the boat or the ear suddenly moves forward, he may fall baekwards. When a carpet is dusted by beating it, the earpet is suddenly propelled forward, but the dust remains. A bad rider may get his body jerked so as to throw the emparatively stationary mass of blood baekwards against the valves of his veins. When a mass is suspended on a spring balance, and the balanee is suddenly lifted, the spring will be unduly stretehed, for the suspended mass docs not at onee participate in the movement.

A hammock in a ship tends to remain in the same place while the ship swings round it. A heavy fly-wheel, rotating, requires some foree to make it turn the plane of its rotation.

Gravitation and Weight. - Every particle of Matter in the Universe is attracted directly towards every
other particle with a Force varying diverdly as the mass of each particle, and inversely as the square of the distance between them. This proposition is called the "Law of Gravitation."

The Force in question is called the Force of Gravitation ; and the Force of Gravitation acting on any particular body, pulling or tending to pull it towards the Earth, is called the Weight of that body.

It is very singular that the TVeight of a borly depends only on its Mass and exactly on its mass, and not in the least upon the quality or kind of matter. If it were otherwise, different kinds of material would fall at different rates; but in a vacuum, where the friction of the air does not interfere with the fall of a falling body, a feather falls with precisely the same speed as a piece of lead ; and a light body falls at the same rate as a heavy one. In the last case, though a smaller Force of gravitation acts on the lighter body, the Mass, or the quantity of matter in that lighter body, is smaller in exactly the same proportion ; and the downward acceleration is the same in both.

We have used the number 981 as being the Acceleration (in cms.-per-sec. per second) due to Gravity acting on a falling body. This number is, however, not the same at all points of the earth's surface ; it varies firom $978 \cdot 1028$ at the Equator to an estimated value of $983 \cdot 108$ t at the Poles. The value 981 is intermediate between the Paris and the Greenwich values, which are respectively $980 \cdot 94$ and $981 \cdot 17$. At Edinburgh it is $981 \cdot 54$. A spring balance will therefore be slightly more distorted by the Weight of a given mass in Edimburgh than in London, more in London than in Paris, and so on.

At any one place the force of gravity appears to be constant ; and gravity may be applied for the purpose of securing a constant unvarying pull say upon a spring (see Fig. 11). Tension produced by the spring itself might not have been so uniform, for the spring might weaken as time went on.

The Force of Gravity may be ronghly measured by an Atwood's machine. In this two equal masses, say of $49 \frac{1}{2}$ grammes each, are balanced over a pulley : then a mass, say of 1 gramme, is put upon one of these, and the whole masses begin
to move. The whole mass moved is 100 grammes; the space traversed in one second is found to be 4.9 cm . ; therefore (1 . 11, equation 2) the acceleration is 9.8 cm .-per-sec. per second; whence the Force acting on the masses is (100 grammes $\times 9 \cdot 8 \mathrm{~cm} . /$ sce. $^{2}=$) 980 (lynes; but this force acting is the Weight of one gramme. This is a very rough method: and the better mothod is ly meaus of a pendulum. We measure the length, l cm., of the pendulam ; and we also count the number of osciflations (to-and-fio) in a given time, and thus ascertain the period (t seconds) of each complete oscillation. Then the number 981 , or whatever it may be, is equal to $39 \cdot 4785 l / t^{2}$.

A pendulum, when pulled to one side, is restored to position by its weight; aud as it oscillates, its kinetic energy always carrying it past the point of rest, its period of oscillation depends on its length and on the local Force of gravity. If the force of gravity be increased, the time of swing is shortenel, for the force acting is greater: if the length of the pendulum be increased the time of swing is also increased, being proportional to the square root of the length of the pendulum, so that a pendulum one-fourth as long oscillates twice as fast.

The true length of a pendulum oscillating at a given rate is measured not by measuring the length of a simple pendulum consisting of a bob suspended on a cord, but by finding the distance between two points C and D (on opposite sides of the midpoint of the rod) on a solid rod or "compound pendulum" AB , such that the rod oscillates in equal times whether suspended on the one loint or on the other. This can be eflected to any nicety, and by taking a sufficient number of oscillations Fig. is. the preriod t can also be found exactly; whence by this method the Accelcration of gravity can be measured to any degree of accuracy desired, with the aid of the above formula.

In walking, the swing of the leg or arm tends to resemble that of a compound pendulum : but it is interfered with, being generally shortencd, by muscular effort.

A pendulum oscillates in approximately equal periods, whether its are of oscillation be great or small, so long as the angle through which it swings does not exceed some 2° or 3° at most

The motion of a pendulum is approximately simple harmonic; for so long as the pendulum is displaced only through a very small angle, the Force tending to bring the pendulum back is very nearly proportional to the displacement. This, it will be remembered, is the criterion of Harmonic Motion.

When gravity acts on a falling object, it acts as if it were concentrated at the centre of mass of that object. 'The centre of mass moves steadily, but the object as a whole may rotate round that centre of mass : and it may, especially if it have a bias (that is, if it be not uniform, so that the centre of mass does not coincide with the ceutre of figure), rotate and swerve round the centre of mass in a puzzling way. The Centre of Mass is also known as the Centre of Gravity.

The Centre of Gravity of a body always tends to assume the lowest possible position.

Hence if any body be freely suspended by a cord, a vertical line drawn from the point of suspension passes through the contre of gravity : and if we takc more than one such point of suspeusiou, we may find the point at which such vertical lines intersect. This is the Centre of Gravity of the body. Thus the eentre of gravity of any plane figure may be found by entting it out in cardboard of miform thickness, suspending the cardboard figure from two different points, drawing the vertical lines passing through the respective points of support, and finding the point of intersection of these lines.

The head generally tends to rotatc and fall forward on the chest ; the trunk forward on the pelvis; the head, trunk, aud thighs backwards round the knee joints; the whole body forward over the anklc joints. When a patient is carried there is a tendency for the body to sag downwards and for the head to rotatc backwards: hence he should be properly supported.

In every case the Centre of Gravity must lie over the base of support, else the body will topple over.

When a man stands, the basc of support is bounded by the heels, the balls of the great toes, aud lines joining these ; if he bear a burden the centre of gravity may not be brought orer this base withont his stooping ; if he be very obese he may have
to assume a very ereet gait. Under normal enditions his centre of gravity is at a point about the front of his last lumbar vertebra. An ofl man broadens his base of support by the use of a staff.

Other illustrations are afforded by the sleeping of quadrupeds on their feet, by the kangaroo supporting itself with the aid of its tail, by the waddling walk of a persoll with a broal pelvis, by the lateral bend of the body when a burden is carried in one arm, and by the erect attitude assumed when burdens are earried on the head.

If an object have its Centre of Gravity relatively high or its base narrow, a slight displacement will bring the centre of gravity to a position in which a rertical line drawn from it falls outside the base of support: and then the object tends, unless propped up, or unless its base of support be moved up under it, to topple over.

Examples of this are furnished by children

Fig. 个6. and young animals learning to walk, or by persons moving or starding on a rope or wire, or stilts, or skates, or a narrow rail, or on one foot? and by boats in which people stand, high chairs in which children are seated, cars heavily loaded atop, or by deck-loaded ships. The bringing up the base of support to a position beneath the centre of gravity is illustrated by the forward step a person takes on reaching the ground when alighting from a tranway car.

If the Centre of Gravity of a body be in the lowest possible position, work must be done in disturbing it ; for any displacement lifts the centre of gravity. In such a case the body is said to be in stable equilibrium.

This is illustrated by a ball lying in a bowl ; when displaced it rolls back, and oscillates in the bowl until it comes to rest. The same thing is seen in a pendulum, a swing, a eradle, a rocking-horse, a ship well ballasted; in the last case the oseillations are somewhat like those of a pendulum whose point of suspension and whose length both vary.

The most stable equilibrium is ensured when the greatest amount of work has to be done before overturning can occur ; and hence the base should be as broad as possible, so as to make it necessary to raise the

Centre of Gravity to the greatest height before upsetting the object ; and the distribution of matter should be such as to make the lowest parts of the object the heaviest.

If a microscope stand be narrow, or not sufliciently weighted at the base, a slight disturbance may upset the instrument: for all the work it would be necessary to
 do would be to lift the centre of gravity C up to D by rotation round the point A along the are CD. If, on the other haud, the base be broad and heavy, the lifting work is greater, and the object is not so readily upset. Many microFig. Ti. scope stands have the foot light and narrow; and such instrumeuts are easily overset laterally. When the stand is a tripod, it is virtually a triangular stand, and

Fig. is. the instrument is somewhat more

Fig. i9. readily upset in the direction CE than in the direction CA. If the stand be broad, heavy, and circular, it is equally difficult to upset in all directions so long as the Centre of Gravity of the instrunent is over its centre ; but if the centre of gravity come to lie over some other point C, the instrument is most readily upset iu the direction CE. For steadiness an instrument should stand on three points, because three points are sure to adapt themselves to the roughness or warp of

Fig. 50. any table, while four points on a surface may not do so ; but these points should be no longer than is absolutely necessary, so that any tilt may cause the edge of the broad and heavy base to press upon the table.
Λ lamp-stand should be cither heavily loaded at its base, or else should be mounted on a very broad base ; nost of the large drawing-room floor lamp-stands are very dangerously designed, and shonld, if uscd at all, always be screwed to the floor.

A photographic camera supported on threc legs may be rendered less easily overset by hanging a bag of stones from the three tripod legs: the centre of gravity is thus lowered.

When a body is poised so that its Centre of Gravity is in the highest possible position, it always tends to turn over so as to bring it to the lowest; but it may remain at Rest. When thus at rest it is said to be in unstable equilibrium ; and the slightest displacement oversets it.

Where, as in the case of a uniform wooden sphere floating in water, the centre of gravity is neither raised nor lowered on the occurrence of a displacement, the Equilibrim is said to be neutral. No work is done, either by or against gravity; during displacement in such a case.

The upper part of a body always presses, in virtue of its Weight, upon the lower.

In some cases it is essential, in surgical practice, to relieve the lower part of the body from the Weight of the upper part: and this is sometimes effected by suspending the upper part of the bolly by means of straps.

Density. - Quantity of Matter, or Mass, per unit of volume (grammes per cub. cm.) Example: Density of lead (11.35 grammes per culb. cm.) $=11 \cdot 35$.

Specific Gravity.-Weight of a given bulk of a sulbstance as comparerl with the Weight of the same bulk of water. Take 3 cub. cm. of learl; the Weight of this is 33403.05 dynes; the Weight of 3 culo. cm. of water is 2943 dynes; the ratio between these is $\frac{8.3+03.05}{3}$ $=11 \% 5$.

Density and Specific Gravity are thus numerically identical.

To find the Densities, or the Specific Gravities, of substances the following methods are in use :-

Solids.-1. Weigh in air (say m grammes) : drop into water in a graduated tube and see by how many cnib. cm. the water rises in the tube (say v cub. cm.) ; then we know the mass m and the volume v, and the Density is the quotient m / v. Graduated tubes for this purpose are called pyenometers.
2. Find the weight of water which is necessary to fill a little flask (a "specific gravity flask") up to a certain mark on the neek. Find the weight in air of the body in question. Drop the body into the flask; then bring the level of the water to the same mark, with the aid of a pipette and some filterpaper if necessary: and find the weight of the contents of the flask. We can thus find the weight of the quantity of water which has had to be removed in order to maintain the
original level. Tho weight of the body itself, divided by the weight of the quantity of water removed, gives the sp. gr.
3. Weigh the body in air : then hang it from the pan of the balance, so as to suspend it in water, and again weigh. It now weighs less: it has apparently lost weight equal to the weight of its own bulk of water (Archimedes' Principle). Therefore divide its weight in air by the apparent loss of weight in water ; and this gives the sp. gr.

In Jolly's spring balance for measuring sp. gr., a long spiral of wire is made to act as a spring balance, first when the object to be examined is in frce air, and then when it is immersed in water. The water ean be raised or lowered until the objeet stands in the water, just immersed and no more.

The apparent loss of weight in water may also be found by a Nicholson's Areometer, This is a bulb with a vertical stem, so loaded that it may float vertically in water, with the stem vertieally npwards. The stem bears two little pans; and in the upper pan we place the body to be tested, along with masses sufficient to make the instrument sink in the water to a certain level. The lower pan is then under water, and we transfer to this pan the body we are testing. The instrument does not now lie so low in the water; but we add masses in the top pan until the former level is restored. The Weight of these masses, added in the upper pan, exactly represents the Wcight which the solid body under examination has apparently lost through being submerged.
4. If the solid be lighter than water, sueh as cork, apply the method No. 1 above; bnt sink the cork by letting down after it into the graduated tube a piece of lead of previonsly aseertained volume. The Volume of the cork can thus be found; and it is supposed that we know its Mass ; whence we can find its Density.
5. If the solid be acted upon by water, find by any of the above methods its sp. gr. in comparison with any suitable liquid of known sp. gr. If a solid substance be $1 \cdot 3$ times as heavy as ehloroform, and chloroform $1 \cdot 5$ times as heavy as watcr, the solid is $1.3 \times 1.5=1.95$ times as heavy as water; that is, its sp. gr. is 1.95 .
6. If a solid float in water, it will float, supposing its sp. gr. to be 0.8 , with 0.8 of its whole bulk beneath the water-level and 0.2 above it. This would not, however, form a practical basis for the estimation of the sp. gr. of a solid ; but it is applied in the estimation of that of a liquid.

Liquids.-1. Find the weight of the quantity of water necessary to fill a speciflc gravity flask up to the marked level ; empty and thoroughly dry the flask (as for example by
rinsing successively first with alcohol and then with ether, and sucking air throngh the llask by means of a glass tuine) ; refill to the same mark with the liquid to ho tested, and find the weight of the guantity necessary. Then the weight of the liquid, divided by that of the cqual volume of water, gives the sp. gr.

In Ostwald's specific gravity flask, for cletermining the sp. gr. of liquids, the liquid is sucked in until it stands with one end at a and the other at b; and the whole is then weightel.

Schmaltz's capillary pycnometer, for ascertaining the sp. gro. of blood, is a small straight tube with fine-drawn ends, containing in all about $\frac{1}{10}$ cub. em. This is filled with water' and weighed, then

Fig. S1. refilled with blood and again weighed. The weight of the tube itself being known, this gives the requisite data.
2. If a solid immersed in water appears to lose 2 grammes of its weight, while if immersed in chloroform it appears to lose 3 grammes, then the sp. gr, of the chloroform is $\frac{3}{2}=1.5$ (Archimedes' Principle).
3. On the principle of paragraph 6 above, an object which sinks to a certain depth in water will sink more deeply in a liquid lighter than water, not so deeply in a heavier liquid. Hydrometers, alcololometers, galactometers, urinometers, ete., are objects which float: they consist of a bulb of glass bearing a graduated stem above and loaded with mereury below, so that they may float with the stem vertieal. The instrumentmaker aseertains at what heights they stand in liquids of known specifie gravities, and graduates them accordingly. When such instrmments are used, the lifquil is placed in a glass vessel, and a piece of black paper may be arranged to serve as a background, in order to facilitate the reading of the level at which the instrmment stands. If a lifquid be muddy, its density, as ascertaincd by a hydrometer, urinometer, or the like, is the density of the muldy liquid as a whole, not that of the pure liquid in which the mud-particles float.
4. Rousseau's Densimeter is a similar instrument which is floated in water. At its summit there is a little cavity, which can hold 1 cub, cm . of the liquid to be tested. The heavier that liquid, the cleeper will the densineter sink: and the instrument is gradnated accordingly.
5. Fahrenheit's Areometer is similar, but bears a little pan at its summit. Suppose it weighs 80 grammes, and that when it is floated in water, an additional weight of 20 grammes in the pan, making 100 in all, will sink it to a certain level; and if on its being floated in ammonia solntion, 8 grammes are fornd
sufficient to sink it to the same level, making 88 grammes in all ; then the sp. gr. of the ammonia solution is $\frac{88}{100}=0.88$.
6. Specific gravity bulbs are sold, marked with numbers, which sink in liquids of sp. grs. less than that marked on them, and float on heavier liquids. In liquids of the correct sp. gr. they float at any depth. Λ handful of these bulbs is let down into a liquid; some sink, some float ; the one exactly eorresponding, if there be one, is at rest anywhere within the liquid.

Gases.-Usually by finding the weight of the quantity of air which oecupies a given copper vessel, and then finding that of the quantity of the given gas which occupies it at the same temperature and pressure.

The Density of gases varics from that of hydrogen (0.0000895682 grammes per cubic cm .) to that of heavy vapours of liquids. The density of air is 0.0012932 grms. per cub. cm. That of liquefied acetylene is 0.34 ; that of iodide of methylene is 3.33 ; that of a saturated solution of cadmium borotungstate is 3.6 ; that of mercury is 13.596 . That of lithium is 0.5936 , and that of hammered platinum is $21 \cdot 25$.

Divisibility.-Since Matter consists of distinct and separate molecules, it is possible to obtain matter in a state of very fine division.

The sodium compounds floating about in the air of a room pereeptibly affeet the speetroscope flame : a grain of musk will perfume a room for years without perceptible loss; the escape of a minute bubble of sulphuretted hydrogen into a large room is distinctly perceptible.

The molecules of matter stand more or less apart from one another in the Ether ; and the properties and states of Matter very largely depend upon the relations of Molecules to one another and to this all-pervading Ether.

The Ether

It is difficult for us to realise that hardly more than seven generations have passed away since people first fully grasped the idea that our atmosphere exists, and that we live and move at the bottom of an ocean of atmospheric air, the weight of which presses upon us and upon all
objects which are within our reach. When this was first stated it created considerable stir among the scientific circles of the time ; but it has now hecome a commonplace of human thought. At the present time we are in much the same position with regarl to one of the fundamental facts of the Universe, the existence of an all-pervading Ether. The existence of this is only an inference from the facts observed by us, but so also is the existence of the Atmosphere, or of any familiar external object; we believe it to exist becanse its existence would explain the facts of our own conscionsness.

The Ether, then, is an all-pervading medinm, in which the sun, the earth, the moon, the planets, and the stars move ; which is something like or analogous to a thin jelly, though it would not be safe to say that it is structureless, for it is probably not so ; which can be set in oscillatory movement, with the consequence that longer or shorter waves are propagated in it, which Waves we come to know of from their giving rise to the phenomena of Light, of Radiant Heat, of Actinic radiation, and of Electromagnetic Oscillations; which can be put under stress, with production of what are called Electrostatic Phenomena; which can on being released from stress, have a thrill propagated through it, which gives rise to the phenomena of Electric Discharge and the Electric Current; and which can be set in whirlpool or vortical motion, with the production of phenomena which we associate with the name of Magnetism.

This Ether is eonsidered, though not with eertainty, to be
 and it is believed that in order to effeet a given transverse deformation in it, the foree required would be $\frac{1000 . \frac{1}{00000} \text { that }}{}$ rerfuired to effeet a similar deformation in steel. The consequence of this is that a eomparatively slowly-moving body may travel in this Ether with ease, for the Ether readily closes up behind it and leaves no trace of any rupture. Λ rapidly vibrating molecule of Matter may, on the other hand, move
too fast to allow the Ether to flow round it, and the Ether may thus be set in Vibration ; and waves may be set up in the Ether corresponding to the vibrations of that molecule.

A serious diffieulty in the examination of the Ether is presented by the eireumstance that by no means known to us ean we extract it even partially from a given spaee: nothing of the nature of an air-pump ean remove it, and even what we eall a perfeet Vacuum is still filled with this Ether. Even if we could produee a perfect vacuum, we would only have taken out the ordinary Matter, none of the Ether. The necessary eonsequence of this is that we cannot compare the conditions say of a flask eontaining Ether, and of a flask containing none or containing less than the former. With Air we can do this; and this enables us to study the properties of the air by direet observation : but with the Ether this is not yet possible.

The best vacuum is produced by applying the air-pump as far as we can, and extraeting the remaining moleeules chemically : for example, if earbonie aeid gas be highly ravefied, we may use eaustie potash to absorb almost the last traces of it.

Molecules and Atoms

In his study of Chemistry the student will have learned that we have no means of destroying Matter, though we may make it change its combinations and sometimes become invisible, as for instance when a eandle is burned and its material becomes eonverted, by eombination with the oxygen of the air, into invisible carbonic acid gas and water-vapour. He will also have learned that Matter in all its forms is composed of, and may be resolved or analysed into some, more or fewer, of about seventy different Kinds of Matter or Elements, and that we have no means as yet of transforming one element into another. He will also have been told what the ehemieal evidence is on the
ground of which chemists believe that all matter is made up of very small particles, called Atoms, which we do not know how to split up any further' and that by far the most part of the Matter in Nature is made up of agglomerations or combinations of these atoms into Molecules, which are the smallest masses or quantities of any given kind of substance that can normally exist in the free state.

For example, a liece of chalk might, in our imagination, be cut down and scraped until we had arrived at the smallest possible mass of chalk ; this would be a molecule of ehalk; but if we tried to cut this down any further; the most we could do would be to break the molecule up into an atom of calcium, one of carbon, and three of oxygen. Of coursc the student understands that this does not refer to anything which we could actually do with a knife or the like instrument; the moleculcs are so small that we could not get at them singly by any such means. And in truth, what we know about Molccules and Atoms is, that it is impossible to understand how the actual phenomena can occur without assuming that they exist: and on that footing we feel justified in saying that they do exist. If we take that plunge, if we say boldly that they do exist, then the whole series of phenomena bccomes stateable with comparative ease.

In a molccule the atoms range in number from 1 in mercury to over 30,000 in protoplasm.

The Chemist says he knows that Atoms and Molecules exist, because he could not otherwise explain how matter enters into combination in accordance with the Law of Fixity of Proportion and the Law of Multiple Proportions ; and further, he arrives at Avvogadro's Law-that in all Gases there are, within equal volumes, always the same number of molecules, provided that the temperature and the pressure are the same. For example, a cubic centimetre of hydrogen contains the same number of molecules as a cubic centimetre of alcoholvapour at the same temperature and pressure, though each molecule of alcohol-vapour contains more atoms (two of earhon, six of hydrogen, and one of oxygen) than a molecule of hydrogen does (two atoms of hydrogen).

Apparent exceptions to Avvogadro's Law he explains in two ways: (1) there may be an abnormal number of atoms in the molecule of an element, as in the case of ozone, in which the molecule contains three atoms instead of two as in ordinary oxygen, with the consequence that a given bulk or volume of ozone (that is, a given number of moleeules) weighs $1 \frac{1}{2}$ times as much as the same bulk or volume (that is, the same number of molecules) of ordinary oxygen : and (2) there may be a break-up or dissociation of the molecules, as in the case of the vapour of chloride of ammonium, $\mathrm{NH}_{4} \mathrm{Cl}$, which vapour occupies twice as much volume as it ought to do according to the theory. This vapour is therefore supposed to contain not molecules of $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$ at all, but a mixture of molecules of $\left(\mathrm{NH}_{3}\right)$ and (HCl) separately. This last supposition would double the number of molecules in a given mass of the vaporised ($\mathrm{NH}_{4} \mathrm{Cl}$), and would therefore double the volume which a given quantity of chloride of ammonium vapour should occupy; and it would thus make the theory fit the facts. That this is a sound hypothesis is shown by the circumstance that if we try to pass the vapour of chloride of ammonium through a long tobacco-pipe stem, ammonia oozes through the porous clay more rapidly than hydrochloric acid does; which shows that the ammonia and the hydrochloric acid are not united, but are separate in the vapour of ammonium chloride, for each gets through the porous clay in its own way, independently of the other.

The Chemist does not usually concern himself much with the structure of an atom: what he is concerned with is its relation to other atoms in its comlinations with them to form a complex Molecule. But he is clear that atoms of different elements differ in their mass, that is to say, in the Quantity of Matter in each, and therefore in their weight; and he is also clear as to this, that whatever the physicist may tell him is the mass or weight of a single atom, all the atoms of any given element, whatever be their mass, have exactly the same mass, so that they all have the same weight, and are like manufactured articles, all similar and mutually replaceable. How this comes to be is a question which transcends both Chemistry and Physics; but the fact simplifies the phenomena of Nature to an extraordinary extent.

So far, then, the Chemist; but the Physicist has his own conclusions also. Except in such matters as Electrolysis he has not hitherto concerned himself much with the chemist's distinction between Atoms and Molecules; but during recent years the distinction las become one of importance in Physics also, for dissociation has had to be called in in order to explain many abnormal phenomena. The physicist has definitely concluded that matter is not homogeneous, but must have some kind of grained structure.

Hany years ago Lord Kelvin, then Prof. Wnn. Thomson, set before himself the question: If there be this grained structure, what is the size of the grains? If a wall be built of bricks, and therefore cannot lee made less than one brick thick, we get an idea as to the size of the bricks if we can find what is the thickness of the thinnest possible brick wall. Similarly we get an idea as to the size of the molecules if we can find the thickness of the thimest possible sbeet of Matter, Prof. Thomson traced this subject out along different lines.

Firstly, we may melt together zinc and copper to form brass ; it is clear tlat not more than a certain amount of Energy is liberated in the form of Heat, through the satisfaction of the mutual attractions, in this operation; but zinc and copper are known to attract one another when brought in contact, a phenomenon which is clealt with under Electricity. A great number of sheets of copper and zinc would evolve a great deal of Energy through the satisfaction of this mutnal attraction : and as such an amount of Energy is not forthcoming upon melting copper and zinc together to make brass, we infer that the number of such possible sheets is limited, and find by calculation that it cannot exceed some 1000,000000 to the centimetre. A molecule of copper or zinc will therefore have a maximum diameter of पणणण. $\frac{1}{0}$ 万णनठण cm .

Secondly, a soap film las a certain minimum possible thickness, beyond which any further stretching would volatilise it. This is again about $\bar{T} \overline{0} . \frac{1}{0} \sigma 000 \mathrm{~cm}$. There are other considerations which point in the same direction.

In 1883 Sir TVilliam Thomson revised his previous estimates, and concluded that if a globe of water the size of a football were magnified to the size of the Earth, the molecules of the water would each oceupy a space magnified to a size something between that of a small shot and that of a football.

Next, as to the nature of these molecules. It will not do to look upon then as hard balls or anything of that kind, because they are too capable of entering into vehement vibration, and because they have considerable action upon one another. The most promising suggestion which has been made is Luord Kelvin's, that they are made up out of the Ether itself: that they are essentially analogous to the smoke-rings which are blown from cannon or from the lips of a skilled smoker, or from exploding bubbles of phosphuretted hydrogen, though they may have more entwined and complicated forms than these simple rings. Such smoke-rings have properties which very closely remind us of those which Molecules appear to have. They are due, in the air, to Friction ; but in a frictionless fluid such "vortex-rings" could not be formed at all ; and it appears that Molecules of this kind, in the Ether, could not originate except by an act of special creation of some kind. But once granted that such "vortex-rings" exist in the Ether", they could move about freely in it; they would each have an invariable volume : if two of them struck one another they would rebound and oscillate, undergoing vibrations: they could not be cut, for they would be repelled from the edge of any conceivable knife ; and they would be capable of consideralble changes of form.

This theory explains many other faets with great readiness: but we are still in ignoranee as to the eanse of Gravitation and as to the real inner meaning of the term physical Mass, as well as of the relation of the ehemieal Atom to the chemieal Molecule in a compound.

Let us take it, then, that Matter, as we know it, is made up of molecules of some kind. We have still to learn something about the behaviour of these. In the first place, there is no case, apparently, in which the molecules are so close together that they cannot move; ther always do move. Their movement is of three kinds, trans-
lational, rotational, and vibrational : and these movements together correspond to a certain amount of Energy, mostly Kinetic, which energy is itself known by the name of Heat. Then again, the vibrations of the molecule set the surrounding Ether in motion; and the Energy imparted to the Ether from the vibrating molecules, and transmitted through the Ether to a distance by means of Ether-waves, is called Radiant Heat, or the Energy of Light, or Actinic Radiant Energy, or the Energy of Electro-magnetic Waves, as the case may be, according to the length of the waves produced.

If the particles are thus to a certain extent free to undergo a movement of Translation, they must each be able to travel for a certain clistance before colliding with any other molecule ; and the average length of this distance is called the mean free path.

Ultragaseous Matter

Suppose that a very few such Molecules are introduced into a perfect Tacuum. How will they comport themselves? They will, in virtue of their kinetic energy of translation, hurl themselves against the wall of the vessel containing them ; by this they will tend to break the vessel, by impact from within : they will thus exert a certain pressure upon the vessel, which will depend upon the number of them and upon their average velocity. After meeting the walls of the vessel they will rebound ; lut their numbers are so small, and their diameters also so small, that each molecule lias only a very slender chance of encountering any other molecule, and at any rate the most part of the molecules will again encounter the walls of the vessel containing them, and will again rebound. When they rebound they spin and vibrate ; and their ribration sets the surrounding Ether in motion.

Mr. Crookes has succecded iu realising a condition something like this ; he managed to cxtract about 99,999999 molecules ont of every 100,000000 in a given bulk of air in a glass tubc; and then the mean frec path of the molecules was something like 4 inches. Up to that limit of distance, the particles, once repelled, in his apparatus, from an electrically charged surface, seemed to travel uninterruptedly in Straight Lines; and for this reason he gave this form of matter, which is in reality no more than an cxccedingly rarefied form of Gas, the name of Radiant Matter. He has devised a number of very attractive experiments, the conduct and result of which all depend upon the long free path and on each molecule being independent of every other : there are so few molecnles present, that any given molecule remains unhampered by may impacts with its colleagues, or by any attraction towards or repulsion from them.

As we go on increasing the number of Molecules within our given space, the mutual impacts or collisions of the molecules themselves become more frequent. On the average, any given molecule will not be able to travel so far without colliding with some other molecule; and the mean free path is thus shortened. When the molecules have become as numerous as they are in ordinary hydrogen gas, under ordinary conditions (somewhere about $1000,000000,000000,000000$ in a cubic centimetre) their mean free path is reduced to about $\frac{1}{100000} \mathrm{~cm}$. , and the number of impacts between any given molecule and its fellows becomes about 17,750 millions per second. We have then arrived at the condition of ordinary Gas, in which the Molecules have only a very small mean free path.

Gases

We may distinguish in ordinary Gases two conditions which merge into one another; and we may take as illustrating these conditions the two extremes, a highlyrarefied gas (one in which there are comparatively few molecules to the culbic centimetre), and a highly compressed gas (one in which there are relatively many).

The difference between these is, that in the former the molecules do not appreciably affect one another by their mutual action ; in the latter they do, because they are more crowded together.

In speaking of Gases we may, in the first place, deal with them as if they all acted as highly-rarefied gases practically do ; in other words, we may deal with them as "ideal perfect gases" ; that is, we may neglect in the meantime all those properties which depend upon the mutual actions of their Molecules. We are thus cuabled to state the properties of Gases in the least complicated manner: and then we shall see that the mutual actions of the molecules of a gas cause anomalies in its behariour, which render the properties of a gas less simple than those of an ideal perfect gas would be.

A Gas has no free surface, and occupies any space within which it may be confined: that is to say, its Molecules find their way into every part of the cavity and strike against every part of the bounding walls. If the cavity be enlarged, the gas expands so as to till it.

It exerts upon every part of the bounding walls the same pressure per sq. cm. ; or rather, it practically does so within vessels of moderate size.

If we set ourselves the problem, what the average speed of the Molecules in their free path must be before they can produce the observed Pressure, we find that it can be solved: but it turns out that this average speed is enormous. In liydrogen it is $184,260 \mathrm{~cm}$. per second, or over 4000 miles an hour: in oxygen it is over 1000 miles an hour.

Note, however, that this is an average speed. If the speed of any given molecule in our atmosphere happened to exceed about 25,000 miles an hour, a departure from the average which in the case of hydrogen seems quite conceivable, and if it happened to have a clear path before it, the molecule in fuestion might dash away from our atmosphere and escape: for the earth's retarding attraction would not be sufficient ever to bring its velocity down to nothing. It has been suggested that
by this means we may have lost all the hydrogen in our atmosphere, molecule by molecule. In the case of the moon the corresponding necessary velocity would be only about 2600 miles per hour-a ciremmstance which wonld render all its atmosphere able to escape very readily and to leave the moon atmosphercless, as it appears now to be.

If we take a volume of Gas in a cylinder, with a piston of a given weight or loaded by the weight of a given mass, the piston will not sink beyond a certain depth. The Weight of the piston tends to pull, and the Weight of the external atmosphere tends to push, the piston downwards; but the Molecules of the gas within the cylinder bombard the piston ; they thus press mpon it and tend to move it upwards. Betwcen these opposed forces the piston remains at rest.

Let us now put a heavier mass upon the piston ; the downward pull due to gravity is now greater, and the piston sinks; but its downward motion is arrested when the molecules per cubic centimetre become so numerous in the gas within the cylinder that their increased bombarding effect on the piston, that is, the increased pressure of the Gas, is equal to the increased compressing Force. But the gas in the cylindcr must be compressed before this condition of things is reached. Gas is therefore compressible ; and the law of its compression is that its volume varies (if its temperature remain the same) inversely as the pressure to which the gas is exposed. Conversely, the pressure which a given quantity of gas exerts is inversely proportional to the volume which it is made to occupy. These are different forms of what is called "Boyle's Law."

Next, we must define the Absolute Temperature of any substance as its Temperature * (in Centigrade degrees,

* We have no hositation in assmming that the student is acquainted with the orlinary meaning of the word Temperature as shown by an ordinary thermometer, On the Centigrade scale water freezes at $0^{\circ} \mathrm{C}$. $\left(=32^{\circ}\right.$ Fahrenheit), and boils at $100^{\circ} \mathrm{C} .\left(=212^{\circ} \mathrm{F}\right.$.)
or degrees on an ordinary Centigrade thermometer) reckoned on the footing that $-273^{\circ} \mathrm{C}$. is an Absolute Zero. Thus a temperature of $15^{\circ} \mathrm{C}$. is 288° Abs. Then, the volume of a gas, if the pressure remain the same, is direetly proportional to its Absolute Temperature ; and if its Volume be eompelled (by inereasing the external pressure or by eonfining the gas within a rigid vessel) to remain the same, the pressure raries direetly as the Absolate Temperature. If the Pressure and the Volume both vary, then their product is proportional to the Absolute Temperature (Charles' Law).

There is a reason for all this. The Absolute Temperature is itself a measure of, it is proportional to, the average kinetic energy of the moleeules ; and so is the product of the Pressure into the Yolume. That produet and the Absolute Temperature are therefore proportional to onc another.

In order to prevent the pressure within a heated gas or vapour from becoming excessive, a safety valve is often used. Here there is a plug whielh is squeezed into an orifice in the boiler by a spring or weight: the internal pressure is not able to eject the phag until it attains a certain amount. When this occurs the valve is forced open. Gas or vapour then escapes, and relieves the internal pressure.

In expansion drop-bottles a little groove is cut in the stopper and bottle-neck; the bottle is inverted and held in the hand ; the hand warms the contained air, which thercupon expands and drives out the liquid in drops. The same result may sometimes be seen in fountain pens, especially when nearly empty.

Since the Volume of a perfect gas (when the pressure is kept constant) is proportional to the Absolute Temperature, and sinee a rise of temperature from $0^{\circ} \mathrm{C}$. to $1^{\circ} \mathrm{C}$. would be a rise from $273^{\circ} \mathrm{Abs}$. to $274^{\circ} \mathrm{Abs}$. , a rise of temperature from $0^{\circ} \mathrm{C}$. to $1^{\circ} \mathrm{C}$. would eorrespond to an inerease of volume in the ratio of 273 to 274 , or 1 to $1 \frac{1}{\frac{1}{2} 73}$. The proportionate increase in volume is thas, for $1^{a^{2}} \mathrm{C} . \mathrm{C}^{\circ}$, equal to $\frac{1}{273}$, and this fraetion is the Coeffleient of Expansion by Heat. If all gases were perfeet this would be the same in all gases; and if air were a perfeet
gas, we could use a quantity of air enclosed in a flask as an air thermometer, for it would not be diffieult to find means for aseertaining how mueh it expanded during a given change of temperature.

Suppose that on being heated from $10^{\circ} \mathrm{C}$. to an unknown temperature, the volume of the enelosed air rose in the ratio $1: 1^{\circ} 04$; the Absolute Temperature is 1.04 times what it was at $10^{\circ} \mathrm{C}$., that is, it is 1.04×283; this is $294.32^{\circ} \mathrm{Abs}$. or $21.32^{\circ} \mathrm{C}$.

The absolute volume of expansion per degree would, in a perfeet gas, be the same for each suecessive degree of temperature : and equal increnients in the volume of sueh a gas would indieate equal increments of temperature.

If we mix two quantities of the same gas at the same temperature, the Temperature of the whole remains equal throughout; that is to say, the average Kinetic Energy of the moleeules remains the same throughout, and the molecules have the same average velocity in all parts of the gas.

If we mix two quantities of the same gas at different temperatures, the Temperature of the whole becomes equalised throughout; the average Kinetie Energy of the moleeules becomes the same throughout, and the moleeules eome to have the same average velocity in all parts of the gas.

If we mix two quantities of different gases at the same temperature, again the Temperature of the whole remains equal throughout: and if we mix different kinds of gases, say oxygen and lyydrogen, at different temperatures, the mixture again comes to a eommon temperature. In either ease the average kinetic energy of the molecules again remains or beeomes the same throughout. But the average translatory velocities of the oxygen and of the hydrogen moleeules respectively are not the same. In order to have equal average amounts of Kinetic Energy, the lighter moleeules must have higher average veloeities, and the heavier molecules smaller veloeities. The velocities of the moleeules of eaeh kind
must be inversely proportional to the square roots of their respective relative molecular weights. The mean velocity of oxygen molecules is thus one-fourth as great as that of hydrogen molecules, because their mass is sixteen times as great.

If we consider two gases, again say oxygen and hydrogen, at the same temperature, but apart from one another, the same principle applies. The mean Kinetic Energy of the several molecules in the two respective gases is the same; and the mean translational velocities are inversely proportional to the square roots of the respective molecular weights.

From this it follows that equal volumes of all Gases contain the same number of molecules ("Avvogadro's Law ") ; and from this arain it follows that gases which are made up of heavier molecules are themselves heavier in exactly the same proportion; that is, that the density of a Gas is directly proportional to the molecular weight of its component molecules.

Gases thus differ in speciflc gravity ; and a heavier gas, such as carbonic acid gas, can be poured out of one vessel into another just as water can. Carbonic acid tends to accumulate in wells, etc., and to lie in brewery vats, just as a heavy liquid would do ; and if the source of supply be constantly active, the process of Diffusion (p. 80) may not be sufficient to carry the accumulation of gas away.

If we have a mixture of gases, the Pressure which it exerts on the vessel containing it is (still on the assumption that the mixture is so far rarefied that there is no appreciable mutual action between molecules of different kinds) the sum of the pressures clue to the molecules of each kind; and the pressure exerted by each component of the mixture is independent of the pressures exerted by the rest of the components ("Dalton's Law ").

If we have the molecules in one region of a gas moving with greater average velocities than those in another, this
ineçuality will be brought to an end: more rapidlymoving molecules will by collision part with their energy to others, and these again in the same way to others beyond then ; and thus we have Transference of Energy from one part of a gas to another. This process is what is known as Conduction of Heat in a Gas ; for the Heat of a gas is itself the kinetic energy of the molecules.

It is convenient to use this phraseology though it is slightly in error. The Encrgy of translation of molecules is kiuetic ; the encrgy of rotation of molecules is again kinetic; but the energy of oscillation or vibration of molecules is half kinetic, half potential. This last renders the above phraseology to that cxtent erroneous; but the error has no consequences so far as we are concerned here.

Further, if we have two layers of gas, one of one kind, another of another, and leave them to themselves, we find them become mixed. The molecules of one kind wander among those of the other : and the result will, if sufficient time be allowed, be complete mixture by this process of Diffusion of Gases. But the time taken to effect complete admixture in the air of a room, or in the coal-gas in the interior of a gas-holder where rich and poor gases are let in, is far greater than the time required to ensure complete admixture in experiments on the laboratory scale.

Diffusion is illustrated by the exchange between the tidal air and the residual air in the lungs; by ventilation through opening the window on a calm day, a process whereby the air is gradually exchanged, but the dust in the room is not affected, for the process is a molecular one merely ; by the diffusion of odours in an apartment: by the diffusion of oil-of-peppermint vapour through a leak in drain pipes into which the oil has been poured ; or by the diffusion of disinfecting gases.

Again, if we drive a current of a gas through a bulk of gas, we find the stream slacken off: some of its molecules wander off into the comparatively-still surrounding gas, and some of the comparatively-slowly
moving particles of that gas wander into it ; and thus the momentum of the strean continually diminishes. This phenomenon is known as the viscosity of gases, the apparent Resistance to the onward Flow of streams of gas.

To this viseosity or Internal Friction of the nir is to be attributed the resistance which objects encounter to motion through the air. The film of air nearest the surface of a moving body practically remains unchanged, and the moving body has to drag this film of air last the surrounding air. Falling water is thus broken up into mist. Conversely, when a body falls through air it drags some air down with it.

This circumstance is turned to account in Sprengel's and Bunsen's air-pumps, in which mercury or water respectivcly, falling in a stream down a tube A, drag air or other gas with them from a side-tube B , and may thos exhanst air or other gas from any vessel with which that side-tube B may be connectel.

The Bunsen pump is used in the filtration of liquids, and the Sprengel for snch purposes as the exhaustion of the bulbs of incanclescent electric

Fig. 83. lamps or of Geissler tubes. If in a Sprengel the lower end of the tube A be bent upwards and immersel under mercury, the gas withdrawn through B may be collected in a test-tnbc.

When a body moves in air, the air in front of it is pushed forward, the air at the side is dragged along with the moving object, and the partial vacuum left behind is readjusted by an iurush of air partieles from all sides. The last may, as in the case of rifle bullets, be so abrupt as to cause a noise, through mntual impact of the molecules ; and this noise is the "singing " of the bullet as it flies. All this causes resistance to the onward movement. A rain drop, as it falls, cannot acquire more than a definite limitel velocity: no more can a balloon parachute, when once it has opened out under the expanding action of the air through which it falls: and a rotating vanc (Foucault's vane) is very gencrally used to regulate the speed of rotation of elockwork, of physiological drum recording appratus, etc., for its speed cannot exceed a certain maximum, which varies with the force exerted by the driving spring.

If we make the Temperature and Pressure of a gas undergo alterations, then, assuming always that there is
no chemical change induced thereby, if we restore the original temperature and pressure we restore, simultaneonsly and completely, the original volume. The previous history of a gas thus makes no mark on its condition at any moment. If we induce a gas to become compressed by increasing the external Pressure, we must keep up that external pressure if we mean to keep up the compression ; and if we let go, and allow the pressure to fall back to its original value, the gas expands to its original volume. All this is expressed by saying that the elasticity of volume of a gas is perfect ; its tenclency to restitution is continuous, and its restitution is perfect when the surrounding conditions are again the same as at first.

Suppose that we have a given mass of gas confined within a given volume, as in Fig. 82, and that we suddenly force the piston in. We have done a certain amount of work in forcing the piston in, against a continuously increasing pressure, through a certain distance. What becomes of the Energy corresponding to this work? It has been imparted to the gas, and makes its molecules move more rapidly; that is to say, Heat has been imparted to the gas. This Heat, being a form of Energy, can be mensured in ergs or in foot-pounds, and the Heat imparted to the gas would, in ergs or in foot-pounds, be exactly equal, in a perfect gas, to the Work done upon it. The gas therefore becomes heated when it is suddenly compressed by the application of an exterior pressure. Conversely, if we allow a gas to expand, doing work against an exterior pressure, it loses molecular kinetic energy; that is to say, it loses Heat, and becomes cold.

In both these eases it is assumed that the operation is so eonducted that Heat cannot escape from the eompressed gas or travel towards the expanding gas : and compression or expansion of this kind, in whieh there is no travelling of Heat either from or towards the gas dealt with, is called Adiabatic compression or expansion.

If, on the other hand, the gas be staddenly compressed or expanded in a metal vessel surrounded by a mixture of ice and water at $0^{\circ} \mathrm{C}$., it will be maintained at the same temperature: in the case of compression, by the escape of heat from it to the mixed ice and water : in that of expansion, by the travelling of leat from the ice and water to it. In the former ease some of the ice melts: in the latter some of the water freczes. In sueh a ease as this the gas itself gains or loses nothing in the way of molecular kinetie energy, and all the Energy corresponding to the Work done is as it were passed through the gas, without aeeumulating or diminishing within it.

If there be mere expansion of a perfeet gas, as where such a gas is allowed to flow from a full vessel A to a vacum-chamber B , the whole being surrounded by rigid walls, so that the exterual pressure plays no part in the phenomenon, the perfect gas would retain on the whole the same average temperature, but the portion left in the vessel A will be colder, while that in the vessel B will be warmer than the average.

It will take a certain quantity of Heat, a certain number of ergs or foot-pounds of Heat, to raise a given quantity of a gas through $1^{\circ} \mathrm{C}$. of temperature. To raise its temperature through $2^{\circ} \mathrm{C}$. will take twiee as much ; and so forth. In this there are two cases to be noted.

1. If our perfect gas be not allowed to expand while being heatel, then the whole of the Heat supplied goes towards raising the Temperature; and the amount of Heat (the number of ergs of Heat) which must be supplied, in order to raise the Temperature of a unit of mass, namely, one gramme, of the gas in question by one degree C . is called the Thermal Capacity of that gas: in this case the Thermal Capacity at Constant Volume.
2. If the gas be allowed to expand freely while being leated, the external Pressure being maintained constant, work is being done, and Energy expended at the same time, in overcoming the external pressure. Therefore, in this case, more Heat must be supplied before we can succeed in raising the temperature of our one gramine throngh $1^{\circ} \mathrm{C}$. ; and thus a Gas has at Constant Pressure a different Thermal Capacity from that which it has at Constant Volume. In a perfect gas the Thermal Capacity at Constant Pressure would bear to the Thermal Capacity at Constant Volume the ratio of 5 to 3 , or $1 \cdot 666$ to $1 \cdot 000$.

The thermal capacity in a perfect gas would depend only on the amount of energy which would be reguired in order to increase the energy of translation, spin, and vibration of each molecule by a eertain amount: and it would therefore be independent of the pressure or of the already-existing temperature.

If a local compression be set up in a Gas, its Moleenles will there he more elosely crowled together. This compression will be propagated through the gas with a Velocity which has been eomputed for a perfect gas, by Clerk Maxwell, at $\frac{745}{1000}$ times the average translational velocity of the moleeules themselves. Similarly for a rarefaction ; and if the local disturbance be an alternation of eompressions and rarefactions, the result will be the propagation of a wave-motion through the gas. In this wave-motion, at any point, the direetion of displaeement of the particles is backwards and forwards in the same direetion as that in which the wave is itself travelling; that is, the vibration is not of the transverse but of the longitudinal type.

The velocity of propagation varies according to the law that the square of that Velocity is directly proportional to the Absolute Temperature, and inversely proportional to the density, of the gas. In oxygen, for example, which is 16 times as heavy as hydrogen, the velocity of the propagation of waves of compression and rarefaction would be $\frac{1}{4}$ as great as in hydrogen at the same temperature,-a ratio which would be exact if those gases were perfcet gases, or were so far rarefied as to act as perfect gases.

When we confine ourselves to one and the same gas, it does not matter what the degree of rarefaction or compression of that gas may be; the velocity of propagation of a wavemotion is not affected by this, at any rate in perfect gases, for the velocity of propagation depends upon the speed of travel of single molecules: if the gas be rarefied, though there are fewer molecules to do the work, each has a longer free path : and this provides complete compensation.

It must be remembered that the actual Temperature of the gas at a place where it is subjected to sudden compression is increased : and therefore the actual Velocity of propagation of compressional Waves is the same as the velocity through a gas heated by a compression during which no heat is allowed to cscape. This was for a long time a puzzle, since the speed of propagation of wave-motions in gases, as fomed experimentally, did not agrce with the early theory of Sir Isaac Newton, in which this consideration had been lost sight of, with the consequence that the calculated velocities of propagation of waves were materially smaller than those actually observed.

We know that the molecule has three kinds of Energy, that of Travel or Translation, that of Spin, and that of Vibration. These three remain steadily proportionate to one another, so that if one falls off, the others fall off too. In the steam-engine the piston is driven along the cylinder by the bombardment of the molecules as they travel and hit the piston : and as their Energy of Translation is being transferred to the piston, the other forms of Energy are being drawn upon, and contribute to the work done upon the piston.

In some departments of Physics the vibrations of the molecules assume leading importance. In a gas each vibrating molecule, as it executes its free path between one collision and the next, vibrates freely, like a sounding tuning-fork thrown through the air; and as it can, in virtue of its own vibration, impose vibration upon the surrounding Ether, we may be able to detect the existence and learn something about the nature of the vibration of the molecule itself. This we do through the phenomena of Raciant Heat and observations made with the prism (p. 259), which show that the Ether-waves which radiate from highly rarefied heated Gases correspond to comparatively simple and regular vibrations of the respective Molecules themselves. But the frequency of these vibrations of molecules is exceedingly great: those which give rise to the undulations in the Ether which are perceptible to us as Light are on the average about 550 millions of millions per second;-the reason being that the Molecules are so elastic and so extremely small.

From the nature of a perfect gas it would follow that in such a gas there could be none of the results of molecular interaction or molecular forces; no stickiness or toughness, no liardness, no capacity for being in any way stretched, or bent, or twisted, or anything of the kind. If any such operations were effected on the containing vessel, the gas would simply still continue to fill
it, and each molecule would wander freely, colliding as it went, from one part of the containing cavity to another.

Ordinary gases, in bulk, behave in many respects as if they were Perfect Gases ; and we shall therefore now go on to consider their behaviour when at Rest and when in Motion.

General Statics of Gases

A gas is similar in all directions; if a little plane be put anywhere within a gas, it will be equally bomsbarded in whatever direction it is made to turn: the Pressure within a gas is therefore the same in all directions. And apart from the Weight of the gas itself, the Pressure throughout a gas is the same at all points, that is if we compare equal areas; it is the same at the surface as in the substance of the gas; and Pressure of this kind is called Hydrostatic Pressure. At the surface it is directed always at right angles to the surface, no matter what the form of the surface may be. If we increase the Pressure over the surface, the increase of pressure is felt throughout the gas : and the pressure per sq. cm. on the surface is reproduced as an equal pressure per sq. cm. at any point in the interior of the gas, in any direction. This principle is known by the name of the Transmissibility of Gaseons or of Fluid Pressure.

But it must be noted that what is here said of Pressure applies only to pressure per unit of area: so that if we compare larger and smaller areas we shall obtain larger and smaller Total Pressures within the

Fig. 84. same gas.

If for example we drive the pistou A into the tube B filled with a gas, the plug C will be driven against the spring D with a Force equal to the Pressmre upon A, if the Area of C be equal to that of A. If C be larger than A, the pressure per unit-area of C remains equal to that per unit-area of A ; but as C is larger, the
total pressure on C and on the spring is greater in direct proportion to the larger area of C ; and the spring C must either be stronger, or will be more distorted when A is pushed in with the sane force as at first. If a man were to spend his whole strength in driving A, a pressure will be exertecl upon C much greater than his unaided efforts would enable him to apply. If this apparatus be put into the form of Fig. S6, we see that a

Fig. 85. smaller weight at A will balanee a larger one at C; and a small exeess weight at A will cause considerably more distortion of the spring at C than it could have eaused directly if aeting alone. In such a contrivance we have, while A is being pushed in, three things to observe: Work done upon the gas at A, Work absorbed by the gas
 during compression on becoming compressed and heated, and Work done by the gas upon the spring at C : and the two latter are equal to the first. We observe, therefore, that the gas does not aet as a simple Transmitter of Energy, for it itself absorbs some and beeomes heated; then as it cools down, if A be fixed in its position, the pressure on the spring D relaxes. So long, however, as the operation is not too rapid, or the fluctuations of pressure at A are not too extensive, so that the gas between A and C does not become appreeiably heated, the relation between the Forces is that the product of the force at A into the movement at A is equal to that of the Foree at C into the Movement at C; that is, that the work done on the gas at Λ is equal to that done by the gas at C .

A thin indiarubber bag or tampon, inserted into any of the eavities of the human body and dilated by foreing air into it, will expand until the Pressure per unit of Area of its surfaee is equal at all points, and equal at each point to the Resistance locally offered by the walls of the eavity and by the bag itself to any further distension. Even without the intervention of an indiarubber bag sueh eavities may be inflated by air ; and the extent to which they will be distended, both generally and locally, follows the same law as when suelh a bag is used.

The pressure in a gas, p dynes per sq. cm., may be measured in various ways, of which the simplest is by means of a Manometer, Fig. 87. In this there is a glass tube, bent as shown in the figure, and closed at C

In CD there is a vacuum. Between B and D there is mercury. If there be no gaseous pressure acting upon the mercury B through the open end A, then

Fig. S7. the mercury will stand at the same level at B and at D, if the tube lave the same diameter at B and at D . If, however, there be a gaseous pressure at A the mercury rises past D; the mereury at B sinks: there is then a certain measurable difference between the levels of B and of D, and the gaseous Pressure supports a column of mereury whose height is $\mathrm{B}^{\prime} \mathrm{D}^{\prime}$ ems. (Fig. 88). This column of mereury has a Weight equal, in dynes, to $\mathrm{B}^{\prime} \mathrm{D}^{\prime} \times 13.6 \times 981 \times$ eross-sectional area of the tube: the Total gaseous Pressure through A is p dynes per sq. em, x the eross-sectional Area of the tube; whence $p=\left\{13.6 \times 981 \times \mathrm{B}^{\prime} \mathrm{D}^{\prime}\right\}$ dynes per. sq. em. The only term in this which needs measurement is the Height $\mathrm{P}^{\prime} \mathrm{D}^{\prime}$; and it is

Fig. Ss. quite suffieient to know this ; so that it is quite common to speeify the Pressure by this Height alone, and to speak of a "pressure of so many em., or so many inehes, of mereury."

Other contrivances may be adopted, in which there is no dircet eommunication between the gas, whose pressure is to be measured, and the interior of the measuring apparatus. Of this kind is the Aneroid Barometer, whieh may be put into the gas in question. In this instrument there is a hollow corrugated case of elastie metal, the interior of whieh has its air removed; the varying cxternal pressures eause varying deformations of the metal ease, and the varying deformations are rendered measurable by being made to aetuate wheelgearing and a dial-pointer ; or they may be made to actuate a lcver provided with a writing-point, whereby the variations of pressure may be reeorded, on a revolving drum, on smoked or on white paper. In some forms of Aneroid Barometer there is a eoiled closed tube, which tube is itself elliptical in seetion and is exhausted of air, As the pressure of the gas surrounding this eoiled tube decreases, the tube tends to straighten out and to beeome more circular in seetion : and this tendeney is made to actuate a dial-pointer. Con-
versely, as the pressure increases, the tube becomes more pinched out or flattened, and more coiled np, The material of the walls of the tube does not stretch or shrink, and the change of form to a more circular cross-section cannot be effected withont a simultaneous straightening out; and vice versấ.

Archimedes' Principle,-Of a mass of gas uniform in density, no part tends bodily to rise or sink ; and thus it appears, so fir as regards any tendency to fall in obedience to the Law of Graritation is concerned, to be relieved of that tendency. If a part of the gas were replaced by an equal bulk of anything else which has precisely the same density, that substitute will again neither rise nor sink, but will float in the gas.

For cxample, suppose the air happencd to be at such a temperature that 5000 cmb . ft. of it weighed 400 lbs , and that a balloon were so constructed that, filled with hydrogen, it would occupy 5000 cmb . ft. and weigh exactly 400 lbs ; such a balloon would float in the atmosphere and would ncither rise nor sink, for it would simply replace an equal bulk of the air. It would then appear entirely relieved of its Weight.

But the same thing liappens even with bodies heavier than air if they be suspended in air ; they are, apparently, partially relieved of their Weight, and that to the extent of the weight of an equal bulk of the air in which they are suspended.

Take, for instance, a brass "weight" of 1 kilogramme, used in a pair of scales. It will occupy about 125 cub, em., if we take the density of brass as being eight times that of water: and it will act like the balloon, to the extent that it is apparently relieved of gravity to the extent of the weight of an equal bulk of air, that is, to the extent of 0.16165 gramme, If we are weighing out a lighter substance, say water, the displacement of air by this will be greater: in the case of a kilogramme of water, it will correspond to an apparent loss of weight of 1:2932 gramme. Weighing out a true kilogramme of water, therefore, involves some arithmetical working, in order to ascertain what weights should be put in the scale-pan.

Now suppose our balloon to expand so as to become lighter than an equal bulk of air: The heavier air
around it will flow under it, and will displace it, just as mercury poured into water will flow to the bottom and lift the water. The balloon will thus rise. It has, of eourse, no ascensional power of its own : the motive power is the greater pull of gravity upon the denser surrounding air. But the result is mueh the same as if it had an aseensional force of its own.

If our balloon weighing 400 lbs . eame to ocenpy 5500 cub. ft., it wonld be 40 lbs. lighter than an equal bulk of air' ; and it would comport itself as an objeet of 400 lbs . Mass, pushed up by a Foree equal to the Weight of 40 lbs ; that is to say, it would move upwards with an Acceleration $\frac{400}{600}$ or $\frac{1}{10}$ that with which an object would fall freely in vacuo.

We need not, however, enelose our bulk of lighter gas or air in a balloon. Suppose a mass of air in a chimney, heated by the fire: it rises for precisely the same reason as the light balloon does; the heavier air flows under it and pushes it up. If the air at any one point be eontimuously heated this operation is continuous, and we have a eontinuous upward current of hot air; but we have at the same time a continuous downpour of colder air elsewhere, and it is this whieh eauses the hot air to be pushed up the ehimney, to take the place of the colder and heavier air whieh has deseended.

General Kinetics of Gases

When a mass of gas is, by any means, exposed to a pressure which is not the same at all points, the gas flows from the point of greater pressure towards all points of less pressure. A gas is therefore a Fluid, as distinguished from a Solid. The tendeney is for the pressure to beeome equalised throughout the mass of gas: but during this readjustment there will be a Flow of Gas.

For example, if the head be laid upon one end of an airpillow, the pressmre moder the head is greater than it is
elsewhere ; the air within the pillow, therefore, flows from unter the head and distends the remander of the pillow, with the consequence that the pressure elsewhere beoomes equal to that under the head. When this condition has been attained the flow eeases, and thereafter there is equilibrium. The aetual Volume of the gas is less, and the Pressure within the gas is greater than they had been before the local pressure was applied ; but the degree of compression is equal throughont the air-pillow. It may be noted that an air-pillow is more easily compressed when it is not than when it is fully distended. In the former case the air is under a certain moderate pressure ; the additional pressure imposed, which is definite, inereases the pressure by a certain percentage: in the latter ease this preentage is smaller because the original pressure was greater ; and therefore in this ease the gas is less compressect.

During the process of readjustment the gas flowing from a compressed region may be caused to pass through a tube. This may be seen where a gasholder is loaded and drives coal-gas through the gas-mains of a town. The readjustment would come to an end when the loaded top of the gasholder sank to its lowest level, and the flow would then cease ; but the flow is kept up by frequently or continuously forcing fresh supplies of gas into the holder, and thus keeping the loaded top of the holder continuously in action. There is thus maintained a continuous difference of pressure between the gas in the holder and that in the mains.

When a stream is driven through a tube which is not of uniform diameter throughout, the strean slackens in the wider parts of the tube and runs more rapidly in the narrower. But the quantity which flows past any one point is the same at all parts of the stream ; for if otherwise, there would be local congestion. The pressure is, however, higher where a rapidly flowing part of the stream has run into a wider space, and has been obliged to assume a smaller velocity.

The gas is also hotter there: for the kinetic energy of the gas as a whole is partly transformed into Heat.

If air be made to flow into a room through conically
widening apertures, as in eertain ventilating bricks, the inflow is slowed down as the air passes through : there is thns no such sharp, quiek draught as would oceur if the air came through simple tubes.

There are many properties of Gases, considered as masses capable of flowing in streams, which it is more convenient to eonsider when we eome to Liquids, to whieh the same propositions apply: these are the Law of Continuity, Torricelli's Law, the relation between VeloeityHead and Pressure-Head, the Lateral Pressure in a stream, and the Fall of Pressure along a stream.

When gas is made to flow from a vessel through a jet the prineiple of action and reaction applies; the gas is driven forward from the jet, and the jet tends to be driven baekwarls. This we may see applied in eertain revolving windowilluminating enntrivanees, in which the jets are so mounted that they ean rotate baekwards round a central axis.

The Flow of gas under a given difference of pressure is not instantaneous: it is measured by the volume which passes per unit of time.

Aeeording to Barlow's Formula, if V be the number of eubie feet which pass per hour, d the diameter of the pipe in inches, h the pressure in inches of water, s the density of the gas (that of air being reekoned as unity), and l the length of the pipe in inches, $\mathrm{V}=1350 d^{2} \sqrt{\text { hid }} / \mathrm{d}$. Otherwise, the number of eubie em. in time t seeonds is $222 \cdot 83 t \cdot \sqrt{p d d^{5} / \rho l g}$, where p is the driving pressure (that is, the differenee between the full pressure applied and the pressure, if any, against which the gas is driven) in dynes per sq. cm., d is the diameter and l the lengtl of the tube in ems., ρ is the density of the gas as com. pared with water, and g is 981 , or the loeal number of dynes in the weight of one gramme.

In order to measure a flow of gas, the quantity of gas whieh flows may be aetually colleeted in a balaneed belljar suspended over water like a small gasholder (Hutchison's spirometer), or in a very large and thin flexible eaoutchoue bag (Boudin) ; or it may be made to drive a registering train of wheelwork (gas-meter, Bonnet's pneumatometer).

The Velocity of the Row of air in Wind is usnally measmed by an Anemometer. This cousists of a rotating vane, with little cups at the ends of its arms. These eups are caught by the wiul and pushed by it: on the whole the vane rotates, and its rotation is measured by any appropriate meehanism. The rotating Torque on the vane may also be measured by the distortion of a spring, which works a dial-pointer.

An important property of streams of gas is that when they pass through other gas, while they themselves lose part of their forward momentum and are slowed, the gas through which they travel has the missing momentum imparted to it, and is as it were dragged forward.

A strong jet of steam A, driven through a cavity B and out into the outer air, will, particularly if it be directed as in Fig. 89 through a conieal blow-tube, rapidly abstract a large proportion of the air in B , and tend to diminish the pressure of the gas or air in B. If there be any way by which other air can take the place of the air exhansted from the chamber B , as by the tube

Fig. 89. C, air will flow up that tube C : and if the tnbe C have a lower end under water, water will rise in C and fill B . When the liquid rises to the level of the steam jet A , the steam is suddenly condensed into liquid by passing into the water: it loses Energy thereby: this energy becomes the energy of forward momentum of the water in the blow-tnbe, and water is driven out with great veloeity, so as even to be able to force its way against the steam-pressure in the boilcr, into the boiler from which the steam itself has come. This is the principle of M. Henri Giffard's steam injector, for filling steam-boilers with water while working.

The first part of the above process is utilised in the sprayproducer. In Fig. 90 air is driven from a bellows or two-

Fir. 90. way indiarubber ball, or steam is driven from a boiler, along a tube which termi. nates near the end of an outer tube B, with a conical nozzle (!. The air or steam, as it rushes out at the nozzle C, carcies air with it from the tnbe B : and this abstraction of air causes liquid to rise up the tulbe D , if the lower end of that tube stand in liquid, and to travel up and be hurled throngh C by the blast of air or steam, which breaks it up and converts it into a spray of small drops. The
same principle is applied in apparatus for blowing powders, such as iodoform or tamius.

The Pressure of the Atmosphere

The atmosphere, at the bottom of which we live, may be described as a kind of Atmospheric Occan which, by reason of its superincumbent weight, exerts pressure upon (and at right angles to) every surface exposed to it. It penetrates into the recesses of everything porous, and there also it exerts Pressure, unless special appliances be made use of in order to remove it wholly or in part.

We live without inconvenience at the bottom of such a heavy atmospheric ocean, just as deep-sea fishes do at the bottom of the sea. The external pressure, about 15 lbs . per square inch, is balanced by the internal pressure of the gases contained in and dissolved within our organism ; and the force of the heart-beat and the condition of our arteries are such as to suit this external pressure.

If we go into a diving bell, where the air is compressed, the drum of the ear is pressed inwards: we must then swallow some saliva. In this action the Eustachian tube is opened, and compressed air gets to the inner side of the drum. The pressure is thus equalised on both sides of that membrane. The same precaution must be taken on emerging.

If we were put into a vacuum, or even into very highly rarefied air, the gases within our organism would be liberated and expand, and we would burst our blood-vessels and break up the tissues by internal effervescence. Bleeding from the nose or lungs is a well-known occurrence at high altitudes: the walls of the blood-vessels are then not adequately supported, from without, against the internal blood-pressure.

When the air within a cavity is rarefied, the external atmospheric pressure will be greater than the internal pressure within the cavity; and the walls of the cavity may collapse or give way, or the fact that there is an External Pressure will in some way become more marked the greater the degree of rarefaction within.

In the Magdeburg hemispheres, a couple of hollow bells: fitted together so as to form a sphere, are separable with ease
until the air is extracted from between them: then they eannot be separated without great foree.

In the boy's sucker the wet leather is fitted on the stone : when the string is pulled, any remaining air is expanded and rarefied, and the atmosphcric pressure keeps the leather firmly pressed upon the stone.

When a rubber disc or cup, applied to a smooth surface, has its centre portion retracted by a screw acting on a piston, the same effeet is observed-as in the applianees whereby reading lamps are attached to railway earriage windows, or aquarium microscopes to the glass walls of an aquariun. In other eases the same result is secured by squeezing a rubber ball before applying the dise or eup; the dise or cup is then firmly appressed when the rubber ball tends to reexpand, as in the attachment of stethoscopes, or of surface thermometers, to the moistened skin.

In the feet of tree toads, in the suctorial discs of Cephalopoda, in the suctorial mouth of Hemiptera, in the feet of house-flies, we have the same thing: this being aided in the last ease by a viseid seeretion, for house-flies ean hold on even in the receiver of an air-pump.

In the cupping glass the air is rarefien, either by a rubber ball or by preliminary heating of the air within the eupping glass before it is applied to the skin. The eupping glass is then held on by atmospheric pressure ; and this Atmospheric Pressure, aeting on the parts of the skin not covered by the cupping glass, squeezes blood-or in the case of suction nipples, squeezes milk-into the partial vaenum.

If any object containing gas or air be placed under the bell of an air-pump, the internal pressure of the gas or air within the object may overpower the diminished pressure of the rarefied air surrounding it, and the object will then tend to become inflated and may even burst.

A little indiarubber balloon, a bladder, half filled with air, a shrivelled apple, a dish of soapsuds, swell up in this way. When dry wood, under water, is treated thus, it ajpears to effervesee, for its contained air expands and eseapes; when the atmospherie pressure is restored, liquid is foreed into the pores of the wood. An egg has generally an air-bubble at one end : if the opposite end of the egg be piereed, under the air-promp this bubble of air will expand and expel the other contents of the shell.

If the internal pressure at any part of our organisms become
at any point less than the atmospherie, the fluids or the semifluid tissues or masses of the borly must flow towards the region of diminished pressure. Hence a permanent vacuum within the body, total or partial, is impossible.

The abdominal walls are closely appressed against the viseera; and these are pressed torether as eompactly as their contents will allow. There is a tendeney to the formation of a vaenons spaee between the ehest walls and the lungs (the "pleural cavity"), but Atmospherie Pressure prevents this by dilating the lungs from within. If the chest walls be punctured the atmospheric pressure aets eønally within and without the lings, and they collapse.

The Pressure exerted by the Atmosphere may be measured by the apparatus of Fig. 87, by simply allowing the external air to enter the tube at A. This pressure is not constant, but at the sea-level it is never very much greater or very much less than a pressure corresponding to a colum of 76 cm . of mercury in that apparatus ; and a pressure corresponding to a so-called "Barometric Height" of 76 cm . of mercury is called "Standard Atmospheric Pressure."

This Standard Atmospherie Pressure is, per sq. cur., equal to the Weight of a column of mercury 76 cm . in height resting on each sq. em. ; that is, it is equal, on each sq. em., to the weight of 76 cub . emt. of mereury.

This is equal to the Weight of (76×13.596) enb. em. or $1033 \cdot 3$ grammes of water ; that is, it is 1,013663 dynes per sq. cm .

The apparatus of Fig. 87, thus used, is a simple form of atmospheric-pressure-measurer or Barometer.

The Aneroid Barometer, described on p . 88, is also very frequently used for determination of the atmospherie pressure.

In another form we may have a tube filled with mercury, and made to stand inverted in a vessel of mercury, with its mouth below the level of the mercury in the containing vessel. In case (a), Fig. 91, the mercury falls out of the tube until it stands at a height of say 76 cm ., with a vacuum above it, the so-called Torricellian Vacuum. In case (b), where the top of the tube is exactly 76 cm.
above the level of mercury in the dish, and in case (c) where the tube is shorter, the mercury does not leave the tube, but eontinues to fill it. In all these cases the wercury tends, by reason of its Weight, to fall back into the dish, but the Atmospheric Pressure, acting on the surface of the merenry in the dish, tends to squeeze it up the tubes. The atmospheric pressure is limited,

Fis. 91. and it can support a column of 76 cm . of mercury or a column of $1033 \cdot 3$ cu. (over 33 feet) of water, or anything less as in ease (c), but no more. Hence in ease (a) there is nothing in the npper part of the tube except the inevitable Ether and a little vapour of mercury.

A common water-pump cannot act if it be so deep that during its action the Atmospheric Pressure would have to force up a column of water exeeeding in height the above-mentioned 33 feet, more or less, according to the aetual variations in the atmospherie pressure.

In the mercury air-pump a flask is filled with mercury, and is eonneeted with a flexible tube, which is also filled with mereury, and whieh dips into a cistern containing merelly. If the flask he raised high enough above the eistern mereury will leave it, and a Torricellian vacuum will be formed in it. If the flask be comneeted with another flask filled, say with blood, the gases dissolved in the blood will be withdrawn and enter the vaeunm-flask, which may theu be disconnected for examination of these gases.

The siphon (Fig. 92) is a beut tube, of which onc end is immersed in liquid which is to be transferred from one vessel to another, while the other end reaches a lower

Fis. 92. level B. The tube is filled with the liquid, and the end A is dipped in the tank D while the lower end B is kept closed. The tube is then opened at B, and the liquil flows out in a continuous stream, which empties the tank D down to the level of the lower end of the shorter limb. The motive power is the unbalaneed Weight of the portion of the liquid in the siphon between the levels A and B. The preliminary filling of the siphon with liquid is somewhat troublesome: and in many eases there is, in $\Lambda \mathrm{B}$, a branch
tube which is used for sueking liquid over the locud C and down the tube CB, and for thus starting the action, with the aid of a stopoock at 13 , whieh is closed during the suction.

A siphon is often used for the automatic discharge of a tank, which is being continuously filled with water from a tap, as in the washing of photograplie plates or prints. The siphon eomes through the side of the tank, not over its cdre. Then, as soon as the water in the tank reaches the bend of the siphon, it begins to flow down CP and the action is started. But the action will not start, as a siphon action, unless the siphon tube be narrow enough to beeome filled at the bend C with the outllowing stream ; otherwise the liquid simply trickles over the bend C and the tank remains full. On the other hand the siphon tube must, even when at the end of its siphon action, take off a stream greater than the inflowing stream ; otherwise the tank will not, when oncc emptied, again beeome filled.

In no casc can a siphou action be set u_{1}, if the height AC be too great, for then a Torricellian vacuum is set up at the bend C; and a siphon will not act at all under the air-pump. In ordinary cases, howcver, it is the cohesion of the liquid itself which kecps it together and makes it move as a whole.

If liquid be poured into the stomach by means of an indiarubber tube (whose lower end enters that viseus) and a filler, and if the indiarubber tube when full have its free end depressed below the level of the stomach, the liquid contents of the stomaeh will pour out through the indiarubber tube, whieh thus acts as a siphon ; and by this means the stomaeh is easily washed out.

A wet cloth or rag or a wet skein of thread, if left with one end in water and the other hanging over at a lower level, will act as a siphon. The siphon tubes in this case eonsist partly of the fibres, partly of the tough superfieial film of the water itself.

Case (c) in Fig. 91 is illustrated by laying a eard across the moutl of a tumbler eompletely filled with water, and inverting the whole: the card does not drop off: atmospheric pressure keeps it in position.

Fig, 93.

Sometimes we need a cistern for the supply of liquid to a vessel, the level of liquid in which is to be maintained uniform. Fig. 93 will serve to show how this may be obtained. A is a flask of water, filled and inverted into a dish B (also containing water), and supported at a predetermined height above B. When the liquid in B falls in the least degree below the level of the mouth of A, some liquid eseapes from A, its place being taken by air whieh enters; but no more liqnid escapes than is requisite to bloek
the mouth of Λ. Atmospheric pressure kecps the liquid in Λ in its place.

If the tube (a) of Fig. 91 be tilted obliquely, its lower end being kept immersed, the liquid will move upwards in the tube; the free vertical height remains unaltered.

If the tube of Fig. 94, with its lateral manometer-tubes, be filled with mercury and inverted into mercury, the mercury in it will partly fall out if the height exceed 76 cm ., and the remainder will stand as shown in the figure. The manometer fitted at the topmost part of the

Fig. 04. tube indicates, of course, no internal pressure in the Torricellian vacuum ; and as we descend the tube, we find the pressure, as indicated by the lateral manometers, progressively increasing.

If we replaced the manometcrs by little pieces of flexible membrane, we should find these more bulged in at the upper part of the tube; for the differences between the internal pressure and the external atmospheric pressure are there greatest.

If an elastic bag be connected with a rigid cap, and if the whole be filled with liquid, the bag may, if it be of sufficient length, sag and dilate in its lower parts so as to form a Torricellian vacuum in the rigid cap: if it be not of sufficient length, there will be mercly a diminution of pressure within the rigid cap. If the rigid cap become flexible at its upper face, it will bulge inwards more or less under the influence of the Atmospheric Pressure: and the form assumed by the bag will be more pear-shaped. The form assumed by the bag is determined, at each level, by the weight of the superjacent liquid and by the elasticity of the bag, together with the atmospheric pressure, which acts uniformly over the surface.

The atmospheric pressure is different at different altitudes. It is as if the air were made up of successive layers, the lower of which are compressed by the weight of those above ; the upper ones are less so. The upper regions of the atmospliere are therefore, as compared
with the lower ones, less dense or more rarefied, and the atmospheric pressure there is correspondingly lower because the superjacent weight is less.

Henee a Barometer (most conveniently an aneroid barometer graduated for the purpose) may be used for the approxinate estimation of mountain heights. But in order to do this aeeurately it is neeessary to know the simultaneous pressure at sea-level. In the lower regions of the atmosphere, near sealevel, a vertieal aseent of 100 feet eorresponds to a fall in the harometric pressure of about 0.29 cm , or 0.114 ineh, of mereury.

The Atmospherie Pressure also varies at the same place from one instant to another. The atmosphere is continually undergoing local disturbances by eurrents, by whirlpools, by superficial waves, and by local heating, expansion, and overflow ; and all these affect the quantity of air which lies, for the moment, over any given spot. The weight of the superjacent column of air therefore varies ; and thus the local atmospheric pressure at any given place varies from one instant to the next.

When any spot has a low barometrie pressure the air tends to flow in from all places where the pressure is greater. The nearer these places are the more violent is the inrush of air. The inrush is modified by the rotation of the earth, so that the air swirls round a centre in a direction whieh, in an ordinary cyclonic storm, is in the northern hemisphere opposed to and in the southern the same as that of the movement of the hands of a wateh. In anticyclones this direction is reversed.

One consequence of the variations in atmospheric pressure is that we must always look at the barometer when we are engaged in dealing with measurements of the Volume of gases. Gases measured at the atmospheric pressure have volumes which vary inversely as that pressure ; and in order to compare our experimental results we have to reduce all our observations of volume to the volume which would have been occupied if the gas had been measured at the standard atmospheric pressure, 76 em . barometrie mercury column. The older standard, 30 inehes of mercury, is now practically superseded.

In many forms of manometer for finding the pressure of a gas, what we really ascertain is not the true Pressure within the gas, but the excess or defect of that pressure above or below the atmospheric.

The most common form of Manometer is a simple U-tube with open ends. The liquid used as a gauge comes to the same level in both limbs when the pressure in the gas is equal to that of the atmospliere : but if the pres. sure to be measured be greater or less than the atmospheric pressure at the time, the difference between the gas-pressure and the atmospheric (not the absolute value of the gas-pressure) is shown by the

Fig. 05. Difference of Level assumed by the liquid in the two limbs of the tube. Let the student make such a U-tube and put some water in the bend ; let him connect this tube by means of a piece of indiarubber tubing with a gas-burner; let him then open the stopcock : the water will rise so as to show a difference of level of say I inch or $2 \frac{1}{2} \mathrm{~cm}$. The gas is said to be supplied at "a pressure of 1 inch of water," ol $2 \frac{1}{2} \mathrm{~cm}$. of water ; and this would correspond to a difference of pressure equal to the weight of $2 \frac{1}{2}$ cub. cm. of water or $\left(2 \frac{1}{2} \times 981\right)=2450 \frac{1}{2}$ dynes on a sq. cm. base, in favour of the gas, above the pressure of the surrounding atmosphere at the time. If at the time the barometer be standing at say 758 mm . or 75.8 cm . of mercury, the atmospheric pressure is $(75.8 \times 13.596 \times 981)=1,010981$ dynes per sq. cm. ; and therefore the actual pressure inside the gas-pipes is $1,010981+2450=1,013431$ dynes per sq. cm.

In the tube A, which is a compression-manometer, there is a certain quantity of air enclosed at C by means of a certain quantity of mercury, which may be adjusted, by

${ }^{\circ}$ ig. 96. partly balanced by the weight of the column of mercury raiscd up in DE. The remainder of the pressure at a is spent in balancing the increased pressure of the compressed air in C. By preliminary graduation, that is, by ascertaining and marking at what height the mercury stands in C for various known pressures, the instrument may be made to indicate the presstrres by direct reading on a scale.

The Bourdon steam-gauge resembles an aneroid barometer
made with a coiled tube (p. 88) ; but the steam is admitted to the interior of this tube, while the atmospherie pressure is external. Any pressure of steam greater than the atmospheric tends to straighten out the coil, and to make the tube nore circular in seetion.

The Atmospheric Pressure acts through any mass of gas without reference to its Temperature. The air in a room may be either hot or cold: this will not, of itself, cause any difference in the atmospheric pressure within the room.

Where local differences are set up between the atmospheric pressure and the pressures within or extermal to any given olject, there is a tendency to Flow, either of gases or of liquids or of semi-solid substances as the case may be.

The principal means of production of differences between the atmospheric pressure ant particular local pressures are (1) the local production of gas ; (2) compression of a given mass of air or gas ; (3) rarefaction of a given quantity of air or gas.

Excmples. -(1) Production of gas, which must either find an outlet or else aeeumulate in quantity and therefore in Pressure: for example, hydrogen in a hydrogen-generating flask (zine and dilute sulphuric acid), eoal gas in a gas-retort. The driving pressure is the excess above the atmospherie. In a gas-evolution flask, the varying Height of liquid in the safety-funnel measures the cxeess of the internal pressure above the external atmospheric pressure: that is, if the delivery tube be, direetly or indirectly, open to the outer air.
(2) Compression of a given mass of air or gas, as in a bellows or a two-way rubber ball. In a bellows as used for limelights, the body of the bellows is filled with gas and a heavy mass is laid on the bellows: the stopeock is opened and the gas rushes out. The atmospheric pressure tends to drive air in ; but the contrary tendeney is the stronger : and therefore, praetieally, the driving pressure is the excess above the atmospherie. Similarly in the ordinary freside bellows, the upper handle is raised: the air inside is rarefied : the external atmospheric pressure forees the valve underneatin, and air enters the body of the bellows; the upper handle is then squeezed down, the valve falls baek, and the air within is compressed; then the
ain in the body of the bellows is forced out through the nozzle. In a two-way rubber ball there are two valves, both opening in the direction in which the air is intended to flow, and preventing back-flow; when the ball is squeezed air escapes from the cavity throngh the front valve: the hind-valve is at the same time pressel baek into its seat. When the pressure ceases the clastic ball strives to regain its original form. Its pressure on the contained residual ait is therefore less than the atmosplieric. The atmospheric pressure forces the hind-valve, while at the same time it eloses the front valve. Air then flows into the ball ; and the ball is free to resume its original form, which it does. The ball is again squeezed by the liand, or by the foot, and air is again clriven out past the front valye.

In the plenum method of ventilation a local excess of pressmre is set up by foreing air into a bnilding: and the air is allowed to find its own way out.

When the thoracic walls coutract air is driven ont of the lungs, and blood out of the thoraeie organs in general.

In coughing we make an expnlsive effort with closed glottis, and thus produce within the chest a pressure greater than the atmospheric: we suddenly open the glottis, and air rushes out of the chest against the external atmospheric pressure.

If we connect a flask with a cistern of water situated at a height, in such a way that water can flow down into the flask from the cistern, the water will tend to compress the air in the flask, and will drive it forward through apparatus connected with the flask. This is one form of aspirator.

In a gasholder, in its simplest form, there is an inverted bell, floating in a tank of water and filled with gas. The bell is more or less heavy and tends to sink in the water, but it is more or less balanced by weights slung over pulleys. If these weights were excessive the bell would be pulled upwards, the gas would be rarefied, and the water would tend to rise in the bell ; but under ordinary conditions the bell still tends to sink, and the gas in it is somewhat compressed, while the water stands at a lower level under the bell than in the tank outsicle it. If this lifference of level of water be 1 inch, the gas in the holder is at a pressure corresponding to "one inch of water " greater than the external atmospheric pressure. If the bell be exaetly balanced, a hole may be made-provided that it be not too large-in the walls of the bell below waterlevel, ant yet no gas will escape, for the atmospheric pressure keeps the whole in place.

In one form of wash-bottle we blow into a flask containing liquid, through a single nozzle: we thus compress the air in
the flask, We sudilenly invert the flask, and liquid is driven out in Ω jet by the compressed air within.

In the dome of the fare engine, air which is continuously kept compressed acts in the same way.
(3) Exhaust-methods.-When we remove some of the air from a confined space we have a volume of air of smaller Density, and therefore under a smaller Pressure, If, for example, we have a flask containing air at the ordinary atmospheric pressure, 76 cm . of mercury, and if we contrive to take out one-fourth the molecules, we shall have air whose density is reduced to three-fourths the original density, and whose pressure is correspondingly reduced from 76 to 57 cm . of mercury. A manometer connected with the flask would have a column of 57 cm . of mercury standing in it. We lave thus made a "partial vacuum" in the flask. This kind of operation may be effected by means of Air-Pumps.

We have already mentioned the Sprengel and the Bunsen pumps. In the ordinary air-pump in its simplest form we have a cylinder Λ, out of which there

Fig. 9 . comes a pipe 3 provided with a valve working inwards. In the cylinder there rums a piston C, through which there is anl aperture protected by a valve working outwards. When the piston is thrust home, the air in the cylinder is squeezed out through C; none can pass the valve on B , which is pressed into its seat. When the piston is drawn back the valve on C closes, so that no atmospheric air can get in; but the air in the vessel D, which is connected with the pipe B, expands, lifts the valve, and fills both D and the expanding cylinder. On thrusting the piston home again a part of this air is driven out through C . This operation is repeated until a considerable proportion of the air in D has been extracted. It becomes more and more difficult to pull the piston back, as the difference between the internal pressure and the external atmospheric pressure goes on increasing.

If we rin a roller along a long rubber tube which is connected with a flask, we squeeze air out in front of the roller, and air from the flask follows the roller up as the rubber tube regains its form. A second roller, following the first, will again drive out some of this air ; and so on. On this principle apparatus has been made in which a single roller acts successively mpon different parts of one and the same rubber tube coiled inside a drum : and on rotating the drum, air is continuously withdrawn from a flask or bell. The rubber tube must be yielding enough to be perfectly closed by the squceze of the roller,
and at the same time elastic enough to regain its form when the squeeze is over, in spite of the external atmospheric pressure which tends to make it collapse.
"Suction."-Suppose we have a closed tube containing some air or gas, standing in mercury as shown in Fig. 98, with the mercury at the same level inside and outside the tube: the gas in A is at a pressure equal to the external atmospheric pressure, Let us now pull the tube up somewhat; two things happen: the gas expands and is rarefied, and the mercury ascends somewhat in the tube. The ascent of the mercury

Fig. is. and the expansion of the gas bear a necessary relation to one another: This may be illustrated numerically, Let the external atmospheric pressure be that of 76 cm . of mercury; let the wercury rise 10 cm , in the tube : then the pressure inside the tube, above the mercury, corresponds to a mercury column of 66 cm . : and the gas, being subjected to this pressure, must, by Boyle's Law, have expanded to a volume equal to $\frac{76}{66}$ times its volume at the atmospleric pressurc. This expansion of volume and the corresponding ascent of mercury in the tube, adjust themselves to one another at every instant while the tube is being raised. Thus the gas is rareficd, and the Atmospheric Pressure pushes mercury up the tube after it. It comes to the same thing if we have a cylinder with a piston : pulling up the piston makes the gas follow the piston : the gas is rarefied, and the liquid is pushed up after it by the Atmospheric Pressure. This is applied in the ordinary and well-known Syringe.

In the common pump a device is added for preventing back-flow, and for thus taking advantage of the ascent of the liquid columm, when the object in view is the raising of liquids, In this instrument the piston P (Fig. 99, there

Fig. 00. represented, for the sake of simplicity, without the rod by means of which it is moved up and down) is so made that fluids can flow upwards through it ; but if they tend to flow back through it, a valve (say a clapper-valve, or a ball resting in a cone) closes, and prevents their return. As the piston is raised the air underneath it is rarefied; the atmospheric pressure closes the valve; and water from the well W follows the ascending piston, being pressed up into the cylinder by the atmospheric pressure. As the piston is sharply returned, some of the air beneath the piston escapes upwards throngh the valve. As the piston is again raised the water is again raised, this time to a higher
level ; anl more air escapes at the next return of the piston. So on ; at length there is so little air left that on its retnrn the valved-piston dips into the wator and some water cones up above the valve. When the piston is next raised it lifts that water bodily, and allows it to flow ont at the spout S . At the next return more water passes throngh the valve, again to be poured out at S; and so on. If the column of water to be lifted exceeds about 33 feet in height, the utmost that could follow wonld be the production of a 'Torricellian vacumen; the pump. will fail to lift water to the piston, lecanse the Atmo. spheric Pressure could not push it up so high.

In the force-pump this inconvenience is obviated by amother arrangement of valves and pipes. The working yiston iP is quite near the water to be pumped up. The water eomes up' as in the ordinary pump, lut it does not flow through the piston, which is solid. It is forced by the

Fig. 100. descent of the piston through an outwardacting valve into a lateral chamber and tube, and it camot return against that valve. If the valves and pipes be strong enough, water may by this means be lifted to considerable heights.

If an aspirator (a form of syringe) for with. llawing pus from an abscess be worked too hard, the pressure within the abscess-cavity may be too fur reduced. The external atmospherie pressure, acting through the surrounding tissues, may then burst blood-vessels, and the aspirator may fill with blood instead of with pus alone.

When a liquid is imbibed through a straw, the monthmuscles make a partial vacuum, and atmospheric pressure pushes the liquicl up from the tumbler into the mouth.

In a pipette, with a rubber cap, the expansion of the rubber tends to produce a partial vacuum, and the liquid runs up to a height where the Weight of the liquid plus the partial Pressure above the liquid are in equilibrium with the external Atmospheric Pressure phus the surface-tension of the eurved npper surface, which is itself able to support a ccrtain lieight of liquil column.

When we take a breath we expand the chest and depress the diaphragm. The air in the lungs tends to become rarefied; but the atmospheric pressure pushes air into the lungs, down the trachea and bronchi.

If a great vein be cut the atmospheric pressure may drive air into the vein at each inspiration.

When a drowning man gasps for breath under water, the atmospheric pressure may, in the same way, push mud, leaves, etc., along with water into his respiratory tract.

It the lungs breathe into rarefied air the chest-walls are foreibly squeezed together by the atmospheric pressure.

When the bones of a joint ate separated by extreme flexion, the atmospheric pressure tends to drive skin and tissues inwards, and thus make an external dimple.

If a test-tube be nested into a slightly larger one coutaining water, it will float. If the whole be inverted, as the water escapes the smaller tube will be pushed up into the larger by atmospheric pressure.

In the vacuum method of ventilation air is expelled from the building by a fan: air is pushed in, by the atmospherie pressure, to take its plaee. Exhaustion by a fan is applied in the exhaust at gasworks, in the ventilating fan of a coal mine, in the smoke-jack of a chimney.

If the air in a room be rarefied by a strong chimneydraught, the atmospherie pressure acting through the drains may be able to force the trap of a toilet-basin.

In aspirators for drawing air through ehemieal apparatus, water is allowed to flow ont of a large jar; air must take its place, else the air within the apparatus will be rarefied ; and this fresh supply of air is pushed by the atmospheric pressure through the apparatus, along whieh a path has been provided for it.

Dr. Braun of St. Louis has revived babies asphyxiated at birth by fitting them in a box with an aperture exaetly fitting the faee. The month and nose are thus exposed to atmospherie pressure ; the body is in the box. On rarefying air in the box, air is driven into the lungs by the atmospherie pressure: on eompressing it the ehest walls are squeezed and ait is expelled. Artificial respiration is thus set up.

In all these cases the Driving Pressure is the difference between the actual local pressure and the general atmospheric pressure.

It comes to the same thing, mechanically, whether the driving pressure be due to the one or the other of these canses ; the only difference is that by compression we 111ay attain any driving pressure we please, while with exhaustion we cannot possibly attain a driving pressure greater than the full atmospheric pressure itself.

For example, if we promote filtration by connecting the flask A with a Sprengel or Buusen air-punp, we may make the
atmospheric pressure, or any desired fraction thercof, drive the liquid through the filter-paper into the

Fig. 101. flask A; but if we were to enelose the funnel within a easing (F'ig. 102) and drive air into that easing from a bellows or rubber ball, we could make the compressed air within the easing drive the liquid throngh the filter-paper into the

Fig. 102. outer air at any desired pressure.

Anomalies in Ordinary Gases

In Gases, as we usually have them at ordinary temperatures and pressures, the Molecules come within the range of one another's attractions; and this interferes with the relative movements of the molecules; so that our ordinary Gases are not "perfect gases."

Consequently Boyle's Law is only approximately obeyed ; the produet of the pressure into the volume tends to become too small as the pressure increases; that is to say, the Volume diminishes, with increasing pressures, more rapidly than the law would indicate: and this departure from Boyle's Law is more marked the nearer the Temperature at whieh liquefaction or condensation oecurs. Again, the lower the temperature the more marked are the departures from Boyle's Law; but the hotter the gas the more nearly it acts as a "perfect gas."

Again, the coefficient of expansion by heat is, at high pressures, in most cases higher than the law previously given would indieate.

When we mix two quantities of differcht gases at different temperatures, there is in many eases a tendency to the resultant temperature being higher than the theoretieal mean; for there has been liberation of Energy through the satisfaetion of mintual affinities between the moleenles of different kinds. There is also a tendency to Volumes smaller than the sum of the component yolumes, and to Pressures smaller than Dalton's Law would indicate.

When gases are allowed to unlergo mere expansion, without doing work, the Temperature is not quite as high after the expansion as it was before it; and this cireumstanee has been used by Lord Kelvin and Mr. Joule to prove that Energy is consumed when gases expand, and that therefore no aetual gases arc "perfect." It is as if the molecules attracted one,
mother, and work had to be expended in pulling them apart. In hydrogen, euriously, the molecules seem to repel one another; for Energy is given out when the gas expands.

The thermal capacities of ordinary gases at constant pressure and at constant volume respectively are not in the ratio 1.666° to 1 . The ratio is smaller than this ; and the actual value of each Thermal Capacity is greater than it would have been in a "perfeet gas." This is beeanse a varying and sometimes a very large amount of Energy is used up in overcoming intermolecnlar forces.

The speed of propagation of vibration in aetnal gases is not as great as it would theoretically be in a perfect gas ; but it approximates to the theoretieal valne as the gas is rarefied or becomes hotter.

The Critical State and Liquefaction

As a Gas becomes more and more compressed, its Molecules approach one another more and more nearly ; and they are more and more hampered by one another in their movements. As the compression goes on a time comes when the gaseous properties of the substance are lost, and the gas is compressed into a liquid. The hotter the gas is the more difficult it is to compress it into a liquid; and for every Gas there is a particular temperature, the Critical Temperature, beyond which no amount of compression can reduce it to a liquid; though compressed into a very small bulk the gas remains a gas, if its temperature be above that limit. For example, for carbonic acid gas, CO_{2}, the critical temperature is $30^{\circ} .92$ C. ; and above $30^{\circ} \cdot 92 \mathrm{C}$. carbonic acid gas cannot be liquefied by any amount of pressure. Below $30^{\circ} \cdot 92$ C. a sufficient pressure will liquefy it. The pressure which will liquefy it at $30^{\circ} \cdot 92 \mathrm{C}$. is 73 atmospheres; and this is called the Critical Pressure. At temperatures below $30^{\circ} \cdot 92 \mathrm{C}$. smaller pressures will liquefy the gas.

If our ordinary temperatures had been above $30^{\circ} \cdot 92 \mathrm{C}$., we would have said that carbonic acid gas was a gas which could not be liquefied by any degree of pressure
alone, and that in order to liquefy it we must cool as well as compress it. Our ordinary gases, such as hydrogen, oxygen, and nitrogen, are in this position, for their critical temperatures are extremely low (oxygen-118 8°.) ; and we must cool them below these temperatures before we can condense them by pressure, which, in such cases, las to be very great. Hence we have usually to apply both Pressure and Cold in order to condense gases into liquids. In other cases, however, pressure alone at ordinary temperatures, or cold alone at ordinary pressures, will condense the gas into a liquid; and if a substance which is a gas when it is hot or rarefied becomes liquid under ordinary pressures at ordinary temperatures, as steam does when it condenses into water, we say that the gas is the vapour of the liquid. The Liquid is then the more ordinary or familiar form or state of that substance.

Steam, as it is usually formed, is an imperfeet gas, for it is near its condensing temperature : but if we rarefy it or make it very hot it eomes to aet more like a perfeet gas. The critieal temperature of steam is as high as $720^{\circ} \cdot 6 \mathrm{C}$.

If we heat a eertain bulk of a liquid to its Critieal Temperature without allowing it to expand, it beeomes a gas or vapour without any change of state being apparent.

Liquids

The Molecules of an ordinary Liquid being crowded together more than they usially are in a Gas, liquids are denser than gases; and the Density of Liquids varies from that of liquefied acetylene, which weighs 0.34 gramme per cubic cm., to that of mercury, which weighs 15.596 grammes per cub. cm. at $0^{\circ} \mathrm{C}$. Water weighs 1 gramme per cub. cm., human blood from 1.045 to 1.075 (average 1.055 ; abnormally, as in chlorosis, 1.030). sulphuric acid about 1.875 ; and one of the heaviest ordinary liquids is a solution of iodide of mercure with
iodide of potassium in a minimum of water, which has a density over three times that of water. This solution is an exceedingly powerful corrosive of the skin. A mixture of equal parts of nitrate of thallium and nitrate of silver, fused at $75^{\circ} \mathrm{C}$, has a density of 45 , and is miscible in all proportions with water.

Lighter particles rise in a heavier fluid, r.f. cream in milk.
In Liquids the Molecules are so near one another that they lave hardly any free path, but they retain a power of slipping past one another. The consequence of this is that a Liquid can flow ; it is a Fluid as distinguished from a Solid.

Liquids can, accordingly, assume any form which may be imposed upon them by the surrounding conditions, but do not do this instantaneously. If we tilt up one side of a dish of treacle, the treacle takes more time to come to a level than water would, and water more time than ether $\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right)$; and the ether would oscillate more in the dish than the treacle will. The treacle flows with more difficulty than the water, that is to say, it is more "viscous." The Viscosity of a liquid retards the Flow of a liquid; and the more viscous a liquid is, the more time will it take to flow through a capillary tube under given conditions.

Given sufficient time, however, all true Liquids will ultimately assume the same form, and will fill the recesses of any vessel of irregular form in which they may happen to be placed.

Melted iron, being somewhat viseous, will take a sharper impression on casting if it be snbjected to pressure while in the melted condition in the mould; it is thus made to fill all the interstices before any outer laard skin has formed.

If a body vibrate within a liquid,-if, for example, a bell be rung under water,--the vibrating body produces alternating Compressions and Rarefactions in the water, and these are propagated through the water by a

Wave-Motion. The viscosity of the liquid affects the speed of propagation, slightly redncing it; and the viscosity has the further effect of gradually transforming the Energy of Wave-Motion into Heat, so that the wavemotion itself dies away.

Fiquids are more resistant to rapid motion throngh them than to slow ; the Frietion inereases with the speed. When the motion is rapid the lifuid does not readily move out of the way, while when it is slow the liguid flows round to the baek of the moving objeet. Thus Ctenophora move about by more swiftly bending and more slowly straightening the hairlike cilia whieh are arranged in bands on their surface; and spermatozon travel by lashing a single eilium, somewhat after the fashion in whieh an oarsman seulls a boat. The rapid rotation of an Arehimedean Serew or a screw-propeller is resisted by the water, which tends to damp the motion ; but conversely, if the water be in motion the wheel will be set in motion, as in the tuxbine.

To the same Intermolecular Forces which cause Viscosity the Cohesion of Liquids is due. It is always somewhat difficult to break a column or stream of liquid, as in the Siphon, Fig. 92, where the liquid does not part asunder at C, but moves as a whole. And it is even possible to set up a certain amount of rarefaction in a Liquid, so that the lateral manometric pressure may be less than zero, the stream or column being then under a certain amount of tension. A drop of liquid suspended on a glass rod may be increased up to a certain size before it breaks off.

If a liquid be compressed, work is done against the Intermolecular Forces: and these intermolecular forces are considerable, as is shown by the very small Compressibility of liquids, that is, their very small shrinkage under the application of compressing Forces.

If we had a cylinder of water, with a transverse seetional area of 1 sq . em., and if we were to apply a Foree or Pressure of one dyne (per sq. cm.) to the free surface by means of a piston, the Volume would shrink by वृ:ण $\frac{1}{0} 0000$ of its mount; if we applied the weight of a gramme the shrinkage would be $\frac{081}{207080}=\frac{10}{20} 10000$ of the original volume; if we applied
ono atmosphere pressure $(=1,013663$ dynes $)$ the shrinkare would be $20 \frac{1073683}{50,000000}=\frac{1}{20} 00$. Water is therefore compressible to the extent of $2 \frac{1}{2} \mathrm{~m}_{0}$ of its volume per atmosplere pressure.

The shrinkage is, for moderate pressures, proportional to the pressure ; but in the case of water it is so small, that for many practical purposes water may be treated as if it were incompressible. When the compressing Pressure on a liquid is relaxed, the liquid perfectly regains its original Volume ; whence it is said that the Elasticity of Volume of a Liquid is perfect.

Liquids generally expand when heated; and the Coefficient of Expansion by Heat (the ratio between the expansion per degree Centigrade and the original volume) varies slightly, but very slightly, with the temperature; so that on the whole the Expansion or dilatation is proportional to the rise of temperature. Conversely, there is a shrinkage or contraction proportional to any fall of temperature.

A full kettle of water will thus overflow when leated.
It is a fortunate circmmstance, in view of the needs of the thermometer-maker, that the Coefficient of Expausion of mercury is, between $-36^{\circ} \mathrm{C}$. and $100^{\circ} \mathrm{C}$., almost uniform, being, for each ${ }^{\circ} \mathrm{C}$., $\frac{1}{5 \delta^{3} 55}$ of its volume at $0^{\circ} \mathrm{C}$. This enables the degrees on the scale of an ordinary thermometer to be made uniform in size; but above $100^{\circ} \mathrm{C}$. the expansion becomes more rapid, and above that temperature the scale ought, for extreme accuracy, to be specially graduated by comparison with an air-thermometer.

When a liquid is heated, as it expands it becomes lighter ; and when a lamp is lit under a vessel of water, the parts of the water nearer the lamp-flame become lighter: then the cooler portions of the water, being heavier, fall to the botton, The heated portions of the water thins rise to the top, and the portion exposed to the heat is constantly being renewed. The currents thas induced in the water are called convection-currents.

When the Temperature falls back to its original value a liquid perfectly regains its original Volume.

Below $3^{\circ} \cdot 9$ C. water contructs when it is heated ; so that water lias a maximum density at that temperature. Water is in this respect an exception to the general rule. This retards the freezing of lakes, for the coldest part of the water rises to the top, and lies there.

Free Surface.-A liquid, placed in a vessel which it does not entirely fill, has a free surface : and this surface is usually level, at right angles to the direction of the Force of Grarity.

Whether level or not, it is always at right angles to the Resultant of the Forces aeting upon it. For example, if we whirl liquid in a vessel, the forces acting at any point are (1) the force of gravity aeting downwards; and (2) centrifugal force aeting outwards: the resultant of these is inclined to the vertieal : and the surface of the rotating liquid is therefore sloped. The slope varies from point to point, so that the whole surfaee of the rotating liquid assumes the form of a "paraboloid."

The Form of the Surface of a Liquid is also affected by Surface Tension, which may now be explained.

Any molecule in the interior of a drop of liquid is equally acted upon on all sides by the neighbouring molecules ; and, consequently, it is not pulled by them in any one direction more than in any other. But a molecule at the surface is pulled upon only by molecules internal to it, while there is nothing to compensate this attraction. The consequence is that each and every superficial molecule is pulled in towards the bulk of the liquid. All the superficial molecules, therefore, get as near as they can to the centre of the mass of the drop. The surface of the drop thus tends to assume the least possible area consistent with the quantity of liquid in the drop. It is as if the superficial layer itself formed a superficial film or skin, which was always under Tension, and which endeavoured at all times to mould itself into the least possible Area consistent with the existing conditions. This surface-film is as it were elastic ; and mercury globules can rebound when thrown on the table.

As an example of this we may take the free surface of water standing in a glass vessel. We find, if the glass be cleim, that the water is not flat over the whole of its surface, but rises up round the rim, as may be seen in a tumbler of water.

This is because we have to do with three surfaces, (1) the surface between water and air, (2) that between water and glass, and (3) that between glass and air. Along all these surfaces, even the last, there is a superficial tension; and the resultant of these three tensions is such that the rim of the water tends to be pulled up the clean glass in a thin layer.

The surface-film of the water being thus pulled out of shape, the form of the water has to follow this distortion of the surface-film.

If we dip a capillary tube-as, for instance, an ordinary vaccine-lymph tube-into water, we olserve two things: (1) the upper surface of the water is deeply curved, for the surface is as it were all rim and no flat; and (2) the pull upon the rim pulls water bodily up the tube until the downward Weight of the water pulled up balances the upward Pull on the rim. This pull of the liquid up the tube is what is called capillary attraction.

The pull upon the rim, due to the Surface-tension, thus determines the height to which the liquid will rise in a capillary tube; but it will be noticed that this is a phenomenon which does not present itself unless the liquid have a free surface.

It is vain to attempt to explain the rise of liquids in capillary tubes, as in the vessels of plants, by this "capillary attraction" unless there be a free surface. There may, however, be "capillary attraction" in another sense: this is illustrated by the rise of oil, pushing up water, in an oily capillary tube : the walls of the oiled tube have a greater attraction for the oil than they have for the water. When we put a porous object, such as a lamp-wiek or a lump of sugar, into water, the pores become filled by the ascent of the liquid in them. This process, which is called imbibition, may be partly due to capillary attraction in the one sense, partly to capillary attraction in the other. A
wetted rope becomes warm, partly because the attraction between rope and water is satisfied, partly because of the concnrrent slninkage. The flow through a lampwick will not be continnons unless the liquid be continuously removed above.

We also see imbibition where moisture travels from briek to briek from damp soil, where there is 110 "damp, course" or intpervious layer of slate to prevent this, and in the cases of lint, of absorptive cotton, and of starch and other drying powders.

In ordinary cases, where a mixture of oils of different volatilities is imbibed by the lampwick of an unlit lamp, the more volatile evaporates away the more rapidly, and in course of time the mixture in the reservoir becomes denser ; but where the flame is lit and the wickholder is hot, the whole oils, if none of them be too heavy, are evaporated together, each at the point where it finds an appropriate temperature, and the oil in the reservoir does not vary in its composition.

The height to which the liquid can rise in a capillary tube varies inversely as the diameter of the tube. If we double the diameter we double the length of the rim, and we therefore donble the mass of water which can be lifted by it; but this double mass, it will be found, will stand only at one-half the original height in the wider tube.

In a tube we may equally well say that the actual Curvature of the superficial film, which film always tends to be flat, can only be maintained by suspending upon that tough or elastic surface film a certain mass of heavy liquid.

Between two plates the height is half what it is in a tube, whose diameter is the same as the distance between the plates: and if two flat pieces of glass be dipped in water, with one vertical cdge of each in contact with a vertical edge of the other, the water stands betwcen them at such heights that its frec edge presents the form of a curve known as an equilateral hyperbola.

When water is drawn up into a pipette, or an auimalcule dipping-tube, and the whole pipette is freely exposed to the atmosphere, it will be found that a certaiu quantity of water tends to remain in the pipette, supported by the surface tension of its upper free surface, while the more sharply-curved and smaller lower surface tends to pull the liquid down towards the point of the pipette.

The pull exerted by the curved surface of a liquid may also be seen then we lay a cover-glass upon a microscopic slide, and lead a drop of water up to the edge of the cover-glass: the water is pulled in betwecn the slide and the cover-glass, and there spreads.

In the ease of mercury in glass, the resultant of the surfacetension is such as to make the meremy stand, as may be seen in a glass bottle or tube containing mercury, with a surface conve.. upwards, the pull on the mereury-rim being in this case downarls. The effect of this is the converse of that observed in the ease of water. Mercury, therefore, sinks in a capillary glass tube.
ln the same way the amount of depression of the surface of mercury is, in capillary glass tubes, inversely proportional to the Diameter of the tube. This circumstance necessitates the application of a correction to the readings of manometers, barometers, and the like, in whicl the height of is mercury column is observel.

The correction for capillarity depends on the kind of glass, and is not the same in all barometers : so that the correetion depends not only on the diameter of the tube, but also on the actual convexity of the surface.

A piece of camphor flies about when laid on clean water. This is because the portions of the surface which happen to have dissolved most camphor have least superficial tension and pull least upon the floating lump: it is therefore pulled in the direction of the least camphoraceous portion of the surface. But if the finger, with a trace of grease on it, tonch the surface of the water, this effect will not be produced: for the surface-tension of the water is greatly reduced by this. If the vapour of ether be ponred upon the water the surfacetension will be reduced in the same way. If a drop of alcohol be laid on a film of water, the water will pull itself away from the alcohol, for its surface-tension is greater than that of alcohol. Weak spirit has greater surface-tension than strong: hence, if a quantity of strong wine in a glass be tilted so as to moisten the sides of the glass, the film left will lose some alcohol by eraporation, and will then pull itself up the sides of the glass. Cold water has more surface-tension than hot; hence, if we leat one point in a film of water, the water withdraws to the edges of the film.

Surface-tension not only pulls water up against class, but pulls glass down in water. A floating hydrometer thus sinks too deeply in the liqnid, so that the liquid alpears lighter than it really is. If it be at all greasy the hydroneter is repelled and stands too high ; but if the water be greasy and the hydrometer clean, the hydrometer stands more nearly at a proper level.

The contraction of a superficial film is manifesterl, in an inverse fashion, in the globular form which a
bubble of gas in a liquid tends to assume. The bounding surface of the bubble assumes the smallest possible area.

The gencral proposition, that a contracting film tends to assume a globular form, is illustraterl ly any hollow contractile viscus of the human body, which tends to assume such a glowular form when it contracts.

The superficial film of many licuids presents, after exposure for some time to the air, considerable toughness, which in some solutions is very well marked.

A solution of saponine (from quillaia bark) or of soap will permit an ascending bubble to tear off the superficial film, which the upward pressure and the surface-tension are not able to rip up. Not only, thereforc, can the soap-water or the saponine solution form froth when shaken, but bubbles can be blown with them. Solutions of albumen or gum arabic will froth, but bubbles camot be blown with them. Pure, perfectly clean water has no supcrficial viscosity, and will therefore ncither froth nor form bubbles. Alcohol has a surface film less tough than the liquid itself: hence the addition of alcohol reduces the superficial film-toughness of a liquid; and for this reason spirit is of service in checking frothing in pharmaceutical operations.

The toughness of the superficial film accounts for the floating of scum on water, for the floating of an oiled needle, for the walking of an insect oll watcr.

When oil is pourcd on troubled water the oil spreads into a layer, for the surface-tension at the edge of the oil pulls it continuously outwards. The new oily surface has little surfacetension and much touglmess, and is therefore not readily broken up into surf.

When a bubble bursts, it bursts cxplosively: it projects its orm substance and the containcd gas some three or four feet through the air. This occurs daring the efferrescence of formenting sewage.

Solution in Liquids.-If we pass a Gas into a Liquid, a certain volume of the gas will generally be dissolved by the liquid. In the resultant Solution the molecules of the gas are disseminated among those of the liquid. The solubility of different gases in the same liquid and that of the same gases in different liquids varies very greatly: one cubic cm . of water will, at $0^{\circ} \mathrm{C}$., dissolve

1148 cub. cm. of ammonia sas, but will dissolve only 0.0325 cub . cm. of oxygen. The "solubility" of these gases in water is accordingly said to be 1148 and 0.0325 respectively.

The solution of a gas in a liquil is generally greater in volume than the original liquid used.

The higher the temperature, the less in general is the solubility of any Gas: the gas-molecules in the solution escape from the surrounding molecules of the solvent: and therefore if the solution be heated the gas will leave it. In some cases, however, the gas does not simply leave the solntion upon heating : for example, on heating a solution of hydrochloric acid gas in water, hydrochloric acil gas is at first given off, until a certain degree of dilution is reached ; and after reaching this limit the dilute hydrochloric acid solution distils over borlily.

Diminution of pressure, again, enables dissolved gases in many cases to leave their solvent : ammonia solution, for example, gives up its ammonia as gas when under the air-pump ; but hydrochloric acid will not give up more than a portion of it in this way.

We may regard such a solution as that of hydrochloric acid gas in water as being in some respects analogous to a Chemical Compound; and then we bring this behaviour of hydrochloric acid solution into line with that of a solution of bicarbonate of soda, which somewhat suddenly gives off half its carbonic acid when the pressure is greatly reduced. When blood is exposed to contmuously dıminishing pressure, it first gives off such carbonic acid and oxygen as it may happen to hold in simple solution (about $\frac{1}{a}$ per cent by volume), and then, at a very low pressure, it begins to give off, somewhat rapidly, the carbonic acid and the oxygen which it had held in feeble chemical combination with its serum and with the hamoglobin of its blood corpuscles respectivcly. If the pressure be sufficiently reduced these gases will be entirely given off. Carbonic oxide absorbed by the red-blood corpuscles will not be given off in this way, nor will hydrocyanic acid.

At an altitude of some 17,000 feet the pressure falls to 30
chn. of meremry : and at this pressure the blood begins to give off the gases which it holds in solution and in combination with hennoglobin. This is dangerous, for bubbles of these gases, liberated in the blood-vessels, iend 10 interfere with the valves of the lient and to obstruct the circnlation in the small blood-vesscls. In a diving bell more of these gases are dis. solved in the blood than can be retained at ordinary atmospheric pressure ; and a similar risk of gas leing liberated in the bloorlvessels is cncomntered on emerging, unless the pressure be reduced gradually. If any untoward symptoms arise the patient shonld be at once re-cxposed to the high pressure: the liberated gases will then be redissolved by the blood.

In many cases the Quantity, that is, the number of grammes, of a gas which is dissolved by a given volume of a liquid is directly proportional to the Pressure: thus at five atmospheres' pressure water will dissolve five times as many granmes of carbonic acid as it will do at one atmosphere pressure; that is to say, it will always dissolve the same Volume of the gas at all Pressures. This is Henry's Law. This law is interfered with if there be any chemical combination between the solvent and the gas dissolved, or when the solubility of the gas in the liquid is very great.

The air respired by fishes is the air dissolved in the water ; and as the atmospheric air is madc mp of oxygen $20 \cdot 9$, nitrogen 78.28 , and argon 0.82 per cent by rolmme, gases whose respective solubilitics are $0.03250,0.01607$, and 0.0394 , the composition of the air dissolved is oxygen $20.8 \times 0.03250=$ 0.676 ; nitrogen $78.28 \times 0.01607=1.258$; and argon $0.82 \times$ $0.0394=0.0323$; or oxygen 34.38 , nitrogen $63 \cdot 98$, and argon 1 164 per cent by volume.

Mutual Solution of Liquids.- If we pass alcohol vapour into cold water it will condense and dissolve in the water ; and the same result will be reached if we add an equivalent amount of liquid alcohol to water. In such a case there is some erolution of Heat and a concurrent shrinkage of volume: while in some cases (e.g., alcohol and bisulphide of carbon) there is an expansion and a concurrent cooling. Some pairs of liquids are therefore mutually soluble. In other cases, as oil
and water, the liquicls will not mix. In others, again, as in the case of ether $\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right)$ and water they will mix in certain proportions ; water will dissolve a little ether, and ether will dissolve a little water ; but if say ergual parts of ether and water be put into a bottle and slaken, they will separate into two layers, - the one a saturated arpueons solution of ether, the other a saturated solution ol water in ether.

Diffusion.-The power which the partieles of a Liquid retain of slipping past one another, thougl their free path is extremely restrieted, is manifested in the phenomena of Diffusion, whieh may be best studied in solutions of salts or other solid sulbstanees. If a phial filleal with a saline solution be wholly immersed some half an inch under water and left to jtself, the salt will slowly diftuse out of the phial into the surrounding water. The amount of the salt which leaves the phial will depend on the length of Time, on the Strength of the solution, and on the Temperature ; and it will also depend on the kind of salt or substance dissolved.

Other things being equal, urea and eommon salt leave the phial twiee as fast as sugar, four times as fast as gum arabic, and more than eight times as fast as egg-albumen.

If it take a given weight of hydrochlorie aeid one day to travel a certain distanee in a column of water, it will take an equal weight of eommon salt $2 \frac{1}{3}$ days; sugar; 7 ; sulphate of magnesia, $\overline{7}$; albumen, 49 ; and earamel, 98 days.

If a mixture of salts be treated in this way, each salt diffuses out of the phial almost independently of the others, and at its own rate of diffusion.

If a double salt be used, it is often found that there is chemieal decomposition ; from alum, sulphate of potash and sulphate of alumina diffiuse out, each at its own rate.

Substances which diffuse slowly or not at all are mostly amorphous or glue-like ; e.g., jelly, glue, earamel. Sulbstances whieh diffuse rapidly are mostly erystalline. The former are ealled colloids; the latter crystalloids.

Colloids lave probably large molecules made up of large numbers of atoms; c.g., protoplasm, which has more than

30,000 atoms per molecule. Crystalloids lave simpler molecnles, with fewer atoms ; e.g., common salt.

Colloids are often in a state of unstable molecular equilibrium, and are ready to deempose when in a mosist condition.

Colloids are very tenacious and athere firmly to other colloids; e.g., isinglass to glass.

Colloids ean often have their moisture replaced by aleohol or olein. An animal tissue is in great part made up of eolloids ; and by repeated washing in alcohol it can have its moisture expelled and replaeed by aleohol.

Colloids, being very slightly diffusible, are tasteless: they do not reach the nerve-ends. For the same renson they are very indigestible-c.g. gelatine-unless peptonised; peptones being, by exeeption, diffusible, thongh otherwise eolloidal.

Hæmoglobin, from the red-blood corpuscles, has a erystalline form though it is otherwise eolloidal.

If a layer of pure jelly be laid on a layer of jelly containing salts, the salts will diffuse into the pure jelly. Were it not for this diffusion of salts through jelly it would not be possible to wash photographic gelatine plates.

Osmosis.-If a layer of colloid matter be laid between pure water and a solution containing both Colloids and diffusible Crystalloids, the latter will gradually pass through the colloid septum, while the former, the colloids, will not.

If a membrane or film of a colloid substance be laid between two different liquids, and if that layer or membrane or film be more readily wetted or soaked by one of the liquids than by the other, the wetting liquid will gradually travel through the wetted colloid septum or partition, while the reverse passage of the other liquid is barred. If alcohol and water be separated by a thin layer of indiarubber, the alcolol will travel into the water: if by an organic septum, such as an aniual membrane, the water travels into the aleohol. If hydrochloric aeid solution and water be separated by an animal membrane, hoth liquids wet the septum ; the hydrochlorie aeid is, however, more attracted by the septum than the water is, and more hydrochlorie aeid passes through in the oue direction than water in the other.

If a weaker and a stronger aqueous solution of the same crystalloid substance be thus separated by a colloid septum, and if the colloid septum be permeable to water but not to the dissolved substance (e.g. if it be a film of
ferrocyanide of copper, such as is produced by bringing a solution of copper into contact with one of a ferrocyanide), Water will travel through the septrm until the strength of the solution is equalised throughont ; this is the process of Osmosis properly so called.

Let the arrangenent be that of Fig. 103, in which the solntion is contained in a flask, while the water is contained in a jar surrounding it, and the solution and the water are separated by a ferroeyanide film C , impermeable to the crystalloid itself : and let the two liquids have at first the same level E : the water will flow through the ferrocyanide film into the solution until the liquid in D has attained a eertain height. When that height las been

Fig. 103. attained, the liquid in A has become exposed to a certain additional pressure. When the additional pressure has been attained in Λ, no more moleeules of water come through B. The pressure in question is ealled the Osmotic Pressure of the solution in A. It keeps out ally further molecules of water, and balances any tendency they may have to permeate the membrane. This messure is due to the molecules of the dissolved substance in A, and is measured by the difference between the level of liquid in D and that at E . Yery curiously, this pressure is always proportional to the number of molecules of the crystalloid in A, and varies direetly as the absolute temperature. That is to say, this Pressure obeys the laws of gaseous pressure, and the crystalloid dis. solved in A acts in every respect as if it were a gas, entirely independent of the liquil throughout whieh its molecules are disseminated.

Sometimes the Osmotie Pressure is too great for the number of molecules of the crystalloid whieh ean be supposed to be present: but a general comparative survey shows us that this may be accounted for by inferring that whereas sueh a crystalloid as sugar does not decompose upon solution in water, the molecules, for example, of common salt are split up into atoms or "ions" of Na and Cl whieh float independently in the water, but recombine to form crystalline chloride of sodium when the water evaporates away.

The same name, Osmosis, is also given to transferences of molecules in similar apparatus, through membranes which are appreeiably porous. In such a membrane the
process involves streams of molecules in each direction through the pores; and this groes on motil the solution on both sides of the nembrane (gencrally an animal membrane or prehment paper) becomes uniform.

Oil globules of extreme smallnoss, floating in water, tend more readily to pass botily through the pores of animal membranes if some alkali be mixed with the water; for then they have eaeh a soapy covering, and are not repelled by the moist membrane, but travel, like so much water, up the axis of each minute pore of the membrane.

If we have water on one side of the membrane and a saturated solution on the other, we shall find that a certain weight of water passes into the saline solution for every gramme of salt that passes into this water, and the ratio between these has been called the Endosmotic Equivalent. This endosmotie equivalent is inereased (that is, more water passes into the saline solution) when the pores of the membrane are narrowed, as by chromie aeid or by tannin.

Through eow's perieardinm, between eommon salt and water, the endosmotic equivalent is 4 ; with corr's bladder it is 6 .

If blood-serum and a strong solution of sulphate of magnesia be separated by an animal mombrane, some sulphate goes into the blood-serum, and some water will enter the saline solution, taking some albumen with it.

When a dead amceba, or a red-blood corpusele, is put in fresh water the strueture swells up and becomes globular.

Curare and snake-poison will not readily pass through the gastrie or intestinal membrane: they are, on the other hand, readily absorbed by the dermis or by serous membranes.

Diffusion through the skin, the tissues, etc., is illustrated by the diffusion of solutions of carbolic acid in aseptie surgery. These solntions diffuse more rapidly than septic germs ean travel ; and thus the septic germs, if any, ean be canglht up by the antiseptic solution and killed.

In the circulation of the blood there is diffusion through the walls of the eapillary blood-vessels between the blood and the surrounding lymph, and again between the lymph and the tissues themselves.

Water travels more readily inwards through frog-skin, more readily outwards through celskin.

Albumen more readily passes throngh a membrane soaked with alkaties.

If the water into which the crystalloid mary pass be constantly or frequently renewed, the diffusion of the
crystalloid is accelerated, and the crystalloid may thus be wholly extracted from the solution. If the solution be agitated, the process is retarded.

If salts be laid upon the dermis they are very rapilly absorbed, for the osmosis through the walls of the lymphatie ressels and veins is acceleratel by the flow of blood in these ressels. For the same reason substanees are very rapidly absorbel by the pulmonary epithelium.

If the solution be pressed against the membrane the normal process of Osmosis is interfered with, and colloids, such as proteids, may pass through as well as crystalloids, along with lirpuid forced through by the pressure, even though in the absence of such pressure they may be indittusible.

Heat favours rapidity of Osmosis ; and an electric current tends to push the liquid bodily through the membrane, so that even gelatine and the fatty matters of milk ean thus be driven through.

The separation of Crystalloids from Colloids by means of a membrane is called Dialysis. When we have to separate a crystalloid poison from the contents of a stomach, for example, we make a dish with a false bottom of animal membrane or of parchment paper, and we stop up any leaks in this by means of albumen coagnlated by heat; we float this on water and put the stomach-contents into it. The crystalloid poison passes into the water, while the colloid mucus, etc., remain in the floating dish or "dialyser."

If we dialyse a solution of peroxide of iron in perehloride of iron, we obtain colloid hydrated peroxide of iron left behind in solution. Neutral Prussian blue (as used in mieroseopic work) may be purified in the same way; so may sucrate of eopper, a soluble colloid eompound of copper oxide with grape sugar, which is reduced by heating. Albumen may also be purified by dialysing the contained salts out of it.

Osmosis through porous membranes is a somewhat irregular phenomenon, which depends on the relation
between the pores and the solid parts of the membrane, upon the width of the pores, upon the nature (colloidal or otherwisc) of the walls of the pores, upon the attraction between these and the respective liquids, upon the mutual action of the liquids, upon the relative masses of the molecules, upon the temperature, upon the electrical conditions, and upon the relative pressures on both sides of the septum ; and in physiological cases it seems to depend on the influence of the nervous system, which affects the condition of the walls of the hlood-vessels. There is, therefore, no simple physical law governing its relations, as there is in the case of true Osmosis through membranes or films devoid of perceptible pores.

When the pores are large, as in paper or paper pulp or sand, the liquid passes through bodily if exposed to Pressure. This pressure may be due to the Weight of the liquid itself, as in ordinary filtration; or to the partial removal of the atmospheric pressure on the side of the filter opposite to the liquid, in which case the atmospheric pressure drives the liquid through ; or to a direct squeeze, as in squeezing mercury through chamois leather ; or to exposing the liquid to an increased gaseous pressure. In all cases there is a tendency for the substance dissolved to be retained within the pores of the filter: whence seawater, filtered through sand or canvas, is less saline than at first.

When a gas is dissolved in a Liquid, and a layer of the same liquid free from gas is laid upon the solution, the molecules of the Gas diffuse, so that the solution rapidly becomes uniform. If two such layers be separated by a membrane which is wetted by both, the diffusion is rapid, particularly if there be relative flow past the membrane.

There is thus a free exchange of Gases, as well as of diffinsible Solids, between the blood and the lymph, and betreen the lymph and the tissues.

Two streams of a liquid, ruming opposite ways past a
membrane, may completely exchange their gascs and dissolved salts, if the length of path be sufficiently great,

Evaporation.-In most cases, when a liquid is set aside in the air it dries up : the liquid disappears ; its molecules escape one by one into the surrounding air, and are carried off by air-currents. This is the process of evaporation,

The air or gas in contact with the liquid thus comes to contain more or less of the vapour of the liquid evaporatcd ; as for example in the charging of air with the vapour of chloroform or ether, evaporated from a handkerchief or sponge, for anesthctic purposes ; or the saturation of coal-gas with ben-zol-vapour to increase its lighting power, or with alcoholvapour to prevent the deposition of icc in the pipes in cold weathcr.

Spheroidal state. - When a liquid is dropped upon a heated surface, the rapid cvaporation of the liquid may cause a layer of vapour to lie bctween the drop and the heated surface, which are, accordingly, not in contact. This is secn when water is dropped on a heated flat-iron in order to find whether the flat-iron is hot enough ; and it is cven possible to put the moist land into melted metal without burning the hand, on account of the development of this protective laycr of water vapour.

If the liquid evaporated be a mixture of different liquids, the general result is that the most volatile component of the mixture escapes in greater proportion than the less volatile components.

Chemical affinities, however, sometines interfere with this: thus if sulphuric acid be set aside to cvaporate, it will not do so, but increases in bulk; it picks up water-molecules from the air, and becomes more dilute. If a mixture of water and alcohol be cxposed in a confined space within which there is muslaked quicklime, some water-molecules cscape from the liquid along with a greater proportion of alcohol-molcculcs: the water-molecules are absorbed by the lime when they happen to light upon it: more water-molecules thereupon leave the dilute alcohol, again to find their way to the lime; but the alcoholmolecules attain a condition of equilibrium, in which as many moleculcs return to the liguid as learc it, Strong alcohol may thus be very effectively dehydrated,

The preceding example shows us that evaporation of the alcohol comes to an end when the alcohol-moleculer, considered by themselves, come to produce a certain pressure upon the liquid ; and il we were to raise the pressure exerted by the alcohol-vapour upon the liquid, the temperature being kept the same, the Condensation would become more rapid than the Evaporation, and then alcohol woukd be deposited in the liquid form. Again, at higher temperatures Evaporation is more rapid, for the Molecules then have greater Velocities and more realily escape. This we may see in the more rapid drying of ink on paper in dry or hot weather. In damp weather, on the other hand, there are already a great mumber of watermolecules in the air, and the ink may take a long time to dry ; for the number of these water-molecules which stick to the ink, when they strike it, is nearly as great as the number which leave the ink for the surrounding air.

On the same principle, when we wish an object-a muscle preparation, a microscopic slide-not to dry up, we may put it in a " moist chamber," that is, under a bell-glass in the company of a quantity of well-wetted blotting-paper: The air in the bell-glass becomes charged with water-vapour, and the preparation remains moist, for it picks up as many water-particles as it loses.

For each temperature the balance between Evaporation and Condensation is reached at a different vapourpressure. For example, if the temperature be $10^{\circ} \mathrm{C}$., this balance exists, in the case of water, when the pressure (so far as this is due to molecules of water) is about 0.012 atmosphere, or abont 0.916 cm . of mercury. If there be so much moisture in the atmosphere that, of the whole atmospheric pressure, 0.916 cm . of mercurycolumn is due to the water-vapour alone, wet objects will not dry at all at $10^{\circ} \mathrm{C}$. : there will not be any apparent evaporation. The air will then be saturated with water-vapour. If there were more moisture than this at that temperature, the atmosphere would be supersatur-
ated with moisture, and moisture would condense: il there were less, the atmospherc would be unsaturated, and Evaporation would take place from wet surfaces.

Again, if water-vapour be in the air in such quantity as to produce a pressure of exactly 0.916 cm . : then if the Temperature be $10^{\circ} \mathrm{C}$. the air will be exactly saturated, and there will be neither liquefaction nor evaporation : if it rise above $10^{\circ} \mathrm{C}$. the air will bccome unsaturated witlr moisture, ancl there will be Evaporation : if it fall below $10^{\circ} \mathrm{C}$. there will be Condensation of moisture from the air, which is then supersaturated.

Let the temperature be say $20^{\circ} \mathrm{C}$., and the pressure of the water-vapour 0.916 cm . of mercury, and let a glass of icced water be brought into the room: as soon as the temperature of the air round the glass is reduced to 10° C. therc will be condensation of moisture on the glass and on the surface of the iced watcr ; and at $0^{\circ} \mathrm{C}$. there will be all the more deposition of moisture.

The temperature of $10^{\circ} \mathrm{C}$., and the aqueous-vapour-pressure of 0.916 cm . of mercury, are thus related to one another ; and so are a series of pairs of such terms, which are to be found in "hygrometrical tables."

In the case above mentioned the condensation of moisture begins at $10^{\circ} \mathrm{C} . ; 10^{\circ} \mathrm{C}$. is the moisture-condensation-temperature, or the "Dewpoint." When the air is damp the dowpoint is high; when the air is dry the dewpoint is low, and there must be considerable cooling before there will be any condensation of moisture.

When air containing water-vapour is cooled down to its Dewpoint there is a dcposit of dew. If this dew is first formed on floating particles of dust or smoke, the minute droplets formed may float for a long time, forming a haze or a fog, any one droplet within which may take a long time to reach the ground, bearing its dustnucleus with it.

Moisture is deposited from the arr, in the form of water, about a water-bed, when the water in the water-bed is cold and the dewpoint is high; and from the breath upon a cors mirror, such as a laryngoscopic nirror. In the latter the proportion of moisture present in the breath is so great that the mirror must be made elistinctly warm in oreler to prevent the deposition of moisture upon it. Similarly, microscopes ought to be fairly warm, else moisture is deposited on the lens from the vapour transpired ly the skin of the observer.

At ordinary temperatures the air is usually far from being saturated, and evaporation from wet smrfaces readily takes place. But if ordinary air be heated withont our adding moisture to it, still less does it then contain enough moisture to satmrate it at its newly-acquired temperature; and evaporation from the moist smrfaces of the lungs is then too rapid for comfort. On the other hand, if the air be nearly saturated with moisture evaporation from the skin is checked, and we feel the atmosphere muggy and oppressive.

The amonnt of water-vapour in the air may be directly determined by subjecting a known volume of the air to the direct moisture-absorbing action of chloride of calcium or of concentrated sulphuric acid, and observing either the decrease of volume or the defect of pressure induced, or the increase in the weight of the absorbent.

It is, however, generally sufficient, and more convenient, to find the temperature at which condensation ol moisture takes place. If we know this we can refer to hygrometrical tables, and ascertain the corresponding quantity of moisture in the air ; and by comparing this quantity with that which would be necessary to satnrate the air at its actnal temperature, we find the degree of humidity.

For example, if the air begin to deposit moisture at $10^{\circ} \mathrm{C}$, we know by the tables that the aqueous vapour in the air exerts a pressure of 0.916 cm . meremry. If the air be actually at $20^{\circ} \mathrm{C}$., we find that at $20^{\circ} \mathrm{C}$. the pressmre of water-rapome necessary in order to saturate the air would have been 1.740 cm ; but there is only 0.916 ; therefore the Humidity is $\frac{0}{1} \frac{1}{4} \frac{1}{0}$, or 52.64 per cent.

The Dewpoint may be measured directly by means of a silver bulb containing ether $\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right)$ in which a thermometer stands. Air is blown throngl the ether, which is thus made to evaporate very rapilly; the bulb is thus rapidly cooled: when it reaches the dewpoint its surface becomes dimmed by the deposition of moisture. The temperature is noted, and is the Dewpoint requirel.

For exact readings we have to take the mean between a series of alternate readings of the temperature at whiel the dimming appears on blowing through, and that at whieh it disappears when the apparatus is left to itself.

The ether may also be made to evaporate in another way, viz., by cooling a seeond bulb conneeted by a tube with the first. The ether-vapour in the second bulb is thus condensed: its Haee is taken by fresh ether-vapour from the first bulb; this in its turn is again eondensed, and so on, The ether in the first bulb is thus kept evaporating, and that bulb beeomes eold.

In a Leslie's "wet and dry bulb" (sometimes called an August's psychrometer), it is not the Dewpoint which is observed, but a phenomenon which depends on the degree of Humidity of the atmosphere.

In this instrument we have two Thermometers: one (the "dry bulb") an ordinary thermometer ; the other (the "wet bulb") a similar thermometer with its mereury surrounded by a well-wetted wiek. The readings of the dry and the wet bulb are different: the wet bulb is cooler the greater the evaporation from its wet eoating; that is, the less the humidity of the air: but it never aetually falls to the Dewpoint itself. Tables have been eonstrueted whieh, from the readings of the dry and wet bulbs, show the amount of Humidity of the air; and in the nse of the instrument these have to be eonsulted.

For rough observations of the state of the atmosphere, gelatine films, whieh straighten out when damp and eurl up when dry : hairs, which absorb moisture and lengthen ; and even paper, whieh does the same thing, may be used. The hygroseopical properties of paper render it unsuitable for aecurate scales or thermometer-graduation; for its length may vary as much as 1 per eent, aceording to the dampuess or dryness of the weather.

Boiling.-The Condensation-T'emperature corresponding to a water-vapour Pressure of 1 atmosphere, or 76 cm. of mercury, is $100^{\circ} \mathrm{C}$. When water is brought to 100° C., at standarl atmospheric pressures it evaporates so rapidly that the escaping molecules can bombard and drive away the surrounding atmosphere, lifting it up against its weight. When this takes place, molecules escape into any cavity formed within the liquir and bubbles are formed, while rapid evaporation also takes place at the inner surface of the bubble. These bubbles rise up in the liquid, and the liquid "boils." Boiling takes place whenever the outward pressure from the liquid is equal to the atmospheric or other gaseous pressure upon the liquid; and hence at a height, where the atmospheric pressure is less, the "boiling-point," that is, the temperature at which boiling occurs, is lower ; for it is not then necessary for the water to be so hot in order to get up an adequate pressure of steam. Thus at Quito, at a height of 9540 feet, water boils at $90^{\circ} \cdot 1 \mathrm{C}$. ; and if the pressure be reduced say to 0.916 cm . of mercury, as by an air-pump, water will boil at $10^{\circ} \mathrm{C}$.

In the Cryophorus, liquid in the bulb A (ether or chloride of ethyl) may be made to boil by eooling the bulb B. Apart

Fig. 104. from the vapour of the liquid, the eavity of the eryophorus is a vaeuum ; and when B is cooled by iee, the vapour is so far condensed that the liquid in A rapidly evaporates, and may even boil at very moderate temperatures. A seeondary effect is, however, that the liquid in A very rapidly cools down unless it be kept at the same temperatnre.

In many cases evaporation or boiling or distillation is best carried on in a partial vacuum eontinuously kept up; as in the evaporation of sugar-solution in vaenum pans, and in many pharmaeeutieal operations. The temperature to whieh the material is exposed is then lowered, and the risk of eharring is averted.

On the other hand, if water be heated in a boiler with a loaded safety-valve, so that the pressure may come up say to 5 atmospheres before the steam can
escape, the water does not boil freely until a temperature of $1522^{\circ} \mathrm{C}$. is attained.

In sterilising water at $120^{\circ} \mathrm{C}$. for half an hour, the pressure attained in the boiler will be 149.13 cm . of mercury, or 1.962 atmospheres; and our boiler must be strong enougl to stand the excess pressure above the external atmospheric ; that is: an uncompensated internal pressure of 0.962 atmosphere.

In a Papin's digester materials are heated in a 1,oiler with a loaled safety-valve, so that steam does not emerge matil the internal pressure is considerable. Under such conditions water acts powerfully as a solvent, e.g. on lones, on glass, etc.

When the liquid to be boiled is a solution the molecules of the liquid do not escape so readily, and the needful temperature is higher : hence the boiling-point of a solution is higher than that of the solvent liquid alone, and rises with the concentration of the solution.

At the same temperatures, solutions have vapour-pressures which differ from the vapour-pressure of the pure solvent at the same temperature by amounts directly proportional to the number of molecules of the salt present in the solntion, but independent of the nature of the salt or substance dissolved.

The boiling-point of a saturated solution of calcium chloride is $179^{\circ} 5 \mathrm{C}$, and that of one of canstic soda is $215^{\circ} \mathrm{C}$.

Statics of Liquids

When a Liquid entirely fills the cavity in which it is enclosed its hehaviour while at rest is, as regards pressure, the same as that of a gas which also fills the containing space. Thus we have the Pressure always at right angles to the surface; the pressure the same in all directions at any given point (Hydrostatic Pressure); and the Transmissibility of Pressure to all parts of the liquid, so that the Pressure per unit of Area becomes the same all over the bounding surface and throughout the liquid.

In a water-bed or water-cushion the water yichls, and the bag dilates at the points not pressed nlon, mil the pressure per unit of area (the "Intensity of l'ressume") is the sanne at all points of the bag. The patient's skin is then exposel to a pressure whieh is miform all over, instead of luing eoncentraterl on particular resions of smpport. The brain itself is praded on a water-cnshion of this kind: for the cerebro-spinal fluid in the subariehmoid spaces supports it in this way.

If an indiarmber bags flled with lisuid be inserted in any of the cavities of the human body, and if pressure be applied to the liquid, the bag will dilate until the back-pressure at every point is equal, per unit of area, to the pressure per unit of area at the point where the pressure is applied. The back-pressure is prodnced by the resistance of the tissues and of the loag itself to expansion : and therefore a distensible bag will dilate more than one with comparatively rigid walls. The same prineiple applies when the bladder is being filled with a solution say of boracie acid, poured in through a catheter tube by means of a flexible tube and a funnel placed at a sufficient height.

It is important to note that the mechanical properties of Liquids are shared by the greater part of the soft masses of the hman body. Even the brain, within very small limits of distortion, can aet as a practically incompressible lipuid, and eau transmit pressure from the arterial system to the skull. This may be seen in the pulsations of the fontanelles in a young ehild ; or by exposing a given area of the brain by trephining, and applying an appropriate pressure-indicating apparatus. If squeezed upon at one place, as by a blood-clot, the brain will equalise the pressure by driving blood out through the veins, and will thus become comparatively bloodless, and therefore ineffieient : and variations in the blood-pressure within the brain cause eorresponding outflows and inHows in the large venous blood-sinmes at the base of the brain.

Even what was said about Gases, at Figs. 84 and 85, that part of the Work expended upon a gas which transmits pressure is expended in heating the gas, is true of Liquids; but the compressibility of licuids is so small that we may neglect this altogether ; and then we arrive at the proposition that when a Liquid transmits Pressure, the work done by the liquid against a Resistance is equal to the work done upon the liquid by the compressing Force. In the Hydraulic Press the greater movement of a smaller piston induces a smaller movement of a larger
piston, as in Fig. 86 ; but the Work done by the one upon the liquid is equal to that done by the other against the resistance overcome ; and the force resisted at C is to the force applied at A as the area of C is to the area of A. Thus if the area of C be 100 times as great as that of A, the aggregate force which can be exerted at C is 100 times as great as that applied at A. But it must be noted that per unit of area the Pressure at C is the same as that applied at A.

In an arterial aneurysm there is a small aperture of communication between the imner lining of the artery and a false cavity, into which the blood has cscaped and worked its way. This cavity has, upon each unit of area of its surface, a pressure cqual to that exerted by the blood at the small aperture, again per unit of area. But the bounding surface of the cavity is much larger than the area of the small aperture ; and hence the total pressure tending to produce dilatation of the cavity is much greater than the pressure upon the small aperture of communication. Over any little area of the bounding surface, erqual in size to the aperture of communication, the pressure tending to produce dilatation at that area cannot exceed but will be equal to the pressure at that aperture.

When the pressure within a bag containing liquid is great, the lag itself is under stretch and tends to rip open, so that it may in some cases be readily ruptured by a comparatively slight accidental blow or additional squeeze.

If the aetion of a liydraulic press be reversed, we find that the total force exerted on the larger piston results only in the transmission of a smaller total force to the smaller piston.

In the same way a large total force exerted over the whole surface of a contractile hollow viscus, such as the bladder, the uterus, the stomach, will result only in the transmission of a moderate total force to the limited area corresponding to the outlet of that viscus.

Heavy Liquids.-In actual Liquids one feature forces itself into prominence, which, though not absent, is of far less importance in Gases-that is, the effeet of the Weight of the liquid itself.

If there be a Free Surface the amospheric or other exterior Pressure will affect the free surfice; if there be no free surface, that is to say, if the lipuid entirely fill the vessel which contains it, the hydrostatic pressure at the topmost point of the liquid may be taken as representing the pressure on the surface of the liquid. At levels below the free surface or the topmost point, the Pressure within the liquid, though at any given point it remains "hydrostatic," that is, equal in all directions, is greater and greater as we descend. The additional pressure at any point, due to the weight of the liquid, depends for its amount upon three things: it is erpual in dynes per sq. cm. to the product of (1) the vertical depth, into (2) the density of the liquid, into (3) the local acceleration of gravity.

Thus at a depth of 10 cm . in heavy mineral oil (density $=$ 0.870) it is $10 \times 0.870 \times 981=8534.7$ dynes per sq. em. Over an area of say 8 sq . em. this will be $8 \times 8534^{\circ} 7=68277^{\circ} 6$ dynes.

It does not matter in what direction the area pressed upon may be sloped, so long as the Depth is measured down to the centre of figure of that area.

Thus the pressure on the iron tubes, boiler, and fittings at the basement floor in the hot water piping of a lofty building may be very great, being about one additional atmosphere pressure for every 33 feet of height. When wood is dragged under water, the water may be driven into its pores, so that the wood heeomes heavier than water and rises no more to the surface. In dropsy and varicose veins, keeping the feet up diminishes the pressure on the veins, by diminishing the actual height of the licquid blood-eolumn. The pressure on the sides of tanks is greater the greater their depth, whenee it is often preferable to make them broad and shallow.

The pressure on the air within a diving-bell is about an additional atmosphere per 33 feet of water ; and thes those engaged in pier and britge building lave, while at work, to breathe compressel air.

When a man stands on his feet the blood in his head is exposed to the ordinary Atmospherie Pressure : when he stands on his head the blood in his head is exposed to the atmospheric pressure plus a pressure corresponding to the colum of blood
in the inverted boly. IIence in the latter case there is it tendency to congestion.

If a man were to lloat in a liquid of lis own specifie gravity, head down, the pessure within the blood-vessels of the head would be retnally greater in the same way, but it would be comaterbalanced by an equal increase in the exterior pressure at a depth within the liquid: so that there would be no congestion.

These two eases may be illustrated by taking a loop of very distensible rubber tubing and filling it with water ; suspended in air it is distended below, suspended in water it is relieved of clistension.

In the case of a slack bag fillect with fluid, lying on a base of support, the actual pressure per unit of area depends on the three terms given above ; and the Total Pressure on the base of support depends on the area of that basis, together with the pressure per unit of area. If the abdomen be considered as a bag filled with practieally fluid eontents, the pressure on the pelvic basis of support remains the same whether the individual be obese or not; if he be, the eontents not overlying the pelvic floor lave to be supported by the abdominal walls, as in Fig. 105 c.

The Pressure per unit Area is the same for all points of the liquid at the same horizontal level ; and the outward pressure on the walls, at each level, is the same all round the liquid. This outward pressure is always at right angles to the walls of the ressel.

In no case does the intensity of pressure at a depth within a liquid depend in any way upon the actual Quantity of liquid which lies above the area in question. For example, in Fig. 105 the pressure on the base of the vessels is the same in all three cases, the base being equal in all

Fig. 105. these; and if the bottom be a false bottom of thin indiarubber, this will bulge equally outwards in a, b, and c. If b were reduced to the form shown in Fig. 106, a trifling additional quantity of liquid in the capillary eolumn B would give rise to an increase in the total Pressure on the base A far exceeding the Weight of
the quantity of liquid added. 'This is what is known by the name of the Hydrostatic Paradox ; hut Fig. 106 is merely another form of the Inydraluic I'ress, analogous to Fig. 86.

The strength of any apparatus of the nature of n flask or boiler may be tested by filing it with water and bringing to bear upon the water, through a manometer U-tube, the weight of a sufficiently tall column of mercury. It does not matter in the least whether the column of mercury be a thin or a thick one.

The principle of Loss of apparent Weight on the part of a body immersed in a fluid-Archimedes' Principleapplies to Liquids exactly as it does to Gases. This principle is applied to the determination of the Density of a solid body, as we have already seen.

The vertical upward pressure within a liquid buoys up any floating body, such as a man swimming, and the Weight of any object immersed seems much reduced. Hence it is easy to lift large blocks of stone while these are under water, but mulls more difficult to lift them out of the water ; and hence also a stream in heavy flood can readily transport large masses of rock.

If we take two similar glass phials, two small rubber bands and four nails, we may construct a couple of rough models to represent a man with his arm above his head, and a man with his arms close to his sides. On putting these into water the one will float, while the other may very well be submerged. The tendency in both is to sink just so far that the weight of the whole is equal to the weight of the water displaced ; but a man with his arms above his head may get his month and nose under water before this position of equilibrium is reached.

If we have two communicating vessels containing the same liquid, the free surface of which is exposed to the same Pressure, as in Fig. 107, the liquid will stand at the same level in the two vessels. If there be any difference in the density of the liquids in the two vessels (say that the liquids are the same liquid at Fig. 107. (say that he liquids are the same lit at different temperatures, or that they are different in their
nature) the liquid in the two vessels will mot stand at the same level. The pressure in the communicationpipe must be equal from both sides; and as this is proportional, in each column, to the product of the Height of the liquid into the Density, it follows that if the clensity of either liquid fall short the height must be increased, and lice verstt.

By observing sueh differences of hcight in two columns of the sane liquid, of which one is heated, we may aseertain what the Change of Volmme is which oceurs when a liquid is heated through an observed number of degrees Centigrade, and therefore we may find the Coefficient of Expansion by Heat per degrec C. The accuraey of the level is interfered with by capillarity or surface-tension, in the way already explaincd, so that corrections have to be introduced in order to allow for this.

Measurement of Liquid Pressure is effected by several instruments, of which many are forms specially adapted for physiological work. We shall mention some of these separately.

1. Manometric tubes open at the top. The pressure within A at the level a is ascertained from the leight and the density of the liquid column $a b$, whieh is upheld by the pressure at the level a. The liunid in the tube ab is eontinuous with that contained in A. If, for example, this liquil be blood (density $=1 \cdot 055$), and if the height of the column of blood sustaincd in ab bc

Fig. 108. 165 cm. ., the pressure at the level a is the prodnct of the height $u b \times$ density of the liquid \times the local acceleration of gravity $=$ $165 \times 1 \cdot 055 \times 981=170768$ dynes per sq. cm. We must add the external atmospheric pressure, whatever that may happen to be, to the figure above in order to ascertain the full value of the pressure within A: but if the atmospheric pressure also act upon the contents of A, we do not make this addition.

Fig. 100.
2. Piezometer-tubes: the same prineiple is applied; but the tubes do not bend below a, so that the height ab has to be measured from the level of the orifice a, that is to say, from the midpoint of the orifice. Piezometcr-tubes are usually applied, when it is possible so to apply them, to the upper surface of the liquid whose pressure is to be measurccl, as in Fig. 109.
3. Mercury manometers.-It is seldom desirable to allow any of the liquid itself to escape from Λ into manomeler on piezometer - tubes, and mercury is used as a

rig. 110. means of measuring the pressure. The lieight of mercury-column measures the pressure. Suppose the diflerence between the levels at a and b is 12.8 cm . of mercury, then the pressure is 12.8 em . (height) $\times 15.596$ (density of mer^{-} cury) $\times 981$ (gravity) $=170768$ (lynes per sq. cm .
4. Even in the preeeding form some of the liquid escapes into the manometer tulue. I'his difficulty may he grot over by inserting into an aperture in the walls of A a tube with an indiarubber cap O. This cap shoukl not be too small in proportion to the size of the tulue: or conversely, the luore of the tube should be small ; that is to say, the tulse should be capil. lary. The mercury should stand at the same level in both limbs of the tube before being inserted; if it do not, the datum to be observed is

Fig. 111 the rise of mereury in the limb ab under the pressure of the air compressed by the cal 0 . This cap O is itself suneezed by the pressure of the liquid into which it is inserted.
5. In Fick's Federmanometer the manometer is replacell by a contrivance like a Bourdon's steam-gauge (p .101) filled witl alcohol. The tulue comecting this with the liquid whose pressure is to be found, may or may not bear a cap of indiarubber or similar material, as in No. 4 just mentioned. If the incliarubher cap be absent, the instrument is used, in physiological work, with the tubes filled with a solution of licarbonate of soda of sp . gr. $1 \cdot 083$, this heing the liquil which may be most safely allowed to escape into the lood without producing coagulation of it. The steam-gauge tube or C-tube is made, as it alters its form, to work a lever which hears a writing-point; this registers the distortions of the C -tube, and therefore indicates the amount of the pressure to be ascertained.
6. Sphygmoscope. - The liquid is continnous from the vessel A to the interior of an indiarubber cap B. Movements

Fig. 112. of the cap cause varying pressures in the space C. These pressures are communicated by the tube D to any contrirance which may indicate or be made to record the varying ain-pressures in C and D. If the cap P be appreciably distended by the pressure, it exerts an elastic back-pressure, and fails to eommunicate to C and D the whole pressure exerted upon it. The instrument is therefore only allapted for small rariatious of pressure.
7. Manomètre métallique inscripteur. - This is, in pinciple, precisely like the Sphygmoscope, but the place of the indiamber cap 13 is taken by a metallic capsule B. I'his is surrounded by higuid, which is syueezed more or less throngh the tube D.
8. Tambours. - In these the sphygmoscopecap is made onc lace of a little chrm ; and as

Fig. 113. it bulges ont and in, it operates the short arm of a light lever, whose long arm bears a writing-point.
9. Dr: Roy's apparatus. - In this the liquid pressure operates an exceedingly light piston in a short side-cylinder. The pressure temls to drive the piston along the cylinder: but this tentency is resisted by a light steel torsion-spring, whose twist indicatcs the actual movement of the piston, and measures the pressure which causes this movement.
10. Maximum and minimum manometers.-These are manometers provided with cup and ball valves, so as to allow liquid to flow frecly in one direction, but not to return. The greatest height of eolumn occurring dnring an cxperiment (maximum manometer), or the greatest diminution of height of liquid plaeed in the tnbe (minimum manometer), can then be ascertained at the close of the obscrvation.
11. Differential manometers.-In these, two tambours are used, connected with different points, the pressures at which have to be compared. Each tambour acts upon one pan of a balance; when the pressures are equal the balance is even ; when not, it inclines to one side or the other.

Manometer and piezometer tubes are faulty when applied to the ineasurement of Variable Pressure, in respect that the liquid within them tends not faithfully to follow the variations of pressure, but to oscillate. The mercury or other liquid, on being set in motion in the tube, acquires Momentum: as the pressure varies, the mercury goes too far, and then falls back too far ; and its movements are, besides, affeeted by friction within the tubc. If the tube be very narrow (as a whole, or locally only) these oscillations fade away; lut the instrument is then slow in its response to rapid variations of pressure, and indicatcs only the mean pressures. In Fick's instrument, No. 5 above, the writing levers have conneeted with them a small dise immersed in glycerine ; the movements of the levers make the dise move in the glycerine, and the viscosity of the glycerine tends to prevent any oscillations. The sphygmoseope, No. 6, and the metallic inscriptor", No. 7, and specially Dr: Roy's apparatus, No. 9, have little inertia to combat, and lence their tenclency to oscillation is small.

All these forms of pressure-indicator or pressure-recorder-
except Nos. 1, 2, anll 3-must, however, he graduated beforehand by dinding what radings they give mular known lressmoss ; and they mast be tested from fime to time, to ascertain how fir they mantain the original absolute valnes of thein readings.

Flow of Liquids

The Flow of Liquids presents many features of importance to the student of medicine, on account of its bearing on the circulation of the blood.

We may see a Flow of Liquid when we lift one end of a tank containing water: the water " seeks its level," and tends to keep its free surface always at right angles to the direction in which gravity acts, that is, always horizontal. The whole mass of the water, in that case, lrings its centre of gravity as low down as possille ; and any given particle of the lipuid becomes pressed upon equally on all sides, which it would not be if the surface of the lirquid were not level.

If an upper overflowing reservoir of water be connected with a lower place of outflow by a straight open channel, the water will flow down the channel in a continuous stream. The water in contact with the walls of the channel does not flow at all: the water most nearly in contact with the walls moves least: and the quickest part of the stream is the central superficial portion A. Assume
Fig. 114. that the slope of the chamel is gentle, so that there is no turbulence in the water; then the water may be assumed to glide along smoothly in such a tray that all successive portions reaching the same point follow the same course, which is parallel to the walls of the channel so long as the walls of the channel are straight and parallel. The Direction of Flow at any point of the stream is a line of flow or stream line at that point. Fig. 115 illustrates the lines of flow in a miforn
steady stream. But if the chamel widen out or narrow down, the lines of How become farther apart or nearer together, as in Fig. 116 . In all such cases it is to be observed that where there is widening the flow must slow down, and where there is narrowing the flow

Fig. 116. must become more rapid: but the actual amount of liquid flowing in the stream most be the same in all parts of the stream, be these narrowed or widened. Leonardo da Vinci, who was a great hydraulic engincer as well as a great painter, formulated the law that the velocity of the current at any point was inversely proportional to its cross-sectional area there. All this assumes, as has been explained, that there is no turbulence or broken water in the stream.

A stream of liquid has, of course, momentum : it has also a certain amount of cohesion: it is thus readily enabled to leap over a chink when its volume or its velocity are considerable. This principle has sometimes been utilised, as in cases where liquid sewage is allowed to fall through chinks in sloping gutters, whereas when a shover of rain comes on, the greater volume of water, runniug with greater speed, leaps over these chinks, and thus does not dilutc the sewage itself, but is directed elsewhere.

In the water-supply of a city or town, a reservoir is filled with water and placed in communication with the water-mains. The water tends to reach the lowest possible position, and it flows along the pipes. At the reservoir itself the water at the inlet to the mains is subject to a Pressure corresponding to the Weight of a superjacent column of liquid, extending upwards from the level of the inlet to the level of the surface of the water. And more than that, as the pipes come down the hill-side from the reservoir, the pressure in the mains tends to increase, for the vertical height of the water in the reservoir above any given point of the main is greater and greater. But at the outlets there is no resisting pressure; hence there is a considerable difference of pressure between
the water in the mains and the water at the stopcocks ; and the conserpuence of this is a flow of water through a tap when the stopoock is openen.

Since liynids tend to flow downwards, necessarily all drainage-tubes should lead downwards; and incisions for surgieal drainage prrposes, as in dropsy or alsseess, should be at the lowest suitable point.

Whon two lipuids of different speeifie gravity are brought into communication, the heavier one uppermost, the heavier liquid tends to flow down through the lighter one, and thus to lower the Centre of Gravity of the whole as mnel as possible. For example, when merenry is poured into water it sinks to the bottom. If a bottle of water be inverted in a ruantity of spirit, the water flows out and spirit takes its place.

Instead of our producing a difference of pressure by means of a difference of water-level, we may do so by the direct application of Force or pressure to the water at one part of a system of pipes. Thus we have water made to flow with great velocity by means of the fireengine, in which the water is firmly pressed upon in the cylinder, and allowed free exit at the nozzle of the hose.

Withont multiplying examples, it may be said broadly that flow of Liquid is caused or determined by a Difference of Pressures between the different parts of a mass of liquid.

But it would not do to make this statement withont qualification. It is not every difference of Pressure which will eanse Flow. There is a differenee of pressure in every ease in which liquid stands in a vessel or tank: the upper layers are subjeet to the atmospherie pressure only, while the lower are suljeet to the atmospherie pressure plus the weight of the superjacent layers; and yet there is not flow, but Equilibrium and Rest. To induec Flow in a liquid contained in a tank it will suffice to open an orifiee in the bottom or side of the vessel ; then the liquid flows out and eseapes; but by doing this we have set up a new difference of pressure, a difference of pressmre which did not previously exist, when the mass was in equilibrium. Before opening the orifice there was equilibrium between the Pressure of the liquid on the walls of the vessel and the Reaction of the walls of the vessel on the liqnid; bnt after opening the orifice, the pressure of the liquid ontwards
throngh the orifice is not counterbalanced by any such reaction, and the liqnid at the orilice flows away, while its phace is continuonsly taken by fresh portions of linuid, which are successively exposed to similar conditions; the resnlt is a continnons stream. The Difference of l'ressine which produces Flow is therefore something superposed upon those differences of pressure which naturally arise in a lifuid exposed, as all masses of Liqnid most be, to the influence of Gravity.

Shonld the pressure ontside the tank be greater than that insilce it, then on opening the orifice liquid may be forecd into the tank, instcad of issuing from it.

In the case of a tank of water with an orifice opened at its bottom or side, there is no donbt that the actnal pressure at or near the orifice internally is not cqual to the hydrostatic pressure ($=$ Height \times Density $\times 981$, per 5 sq. cm.) which may be measured there when the orifice is closed: it is smaller; but the whole question is very mnch simplified by the circumstanco that the outflow is the same, when once a steady stream has been set up, as if we had to deal with a full and undiminished Hydrostatic Pressure internally.

There are two ways of stating the amount of pressure under which the liquid is being driven through an orifice. Firstly, we may say that the Pressure per unit of Area is equal to so many units of force or Dynes : or, secondly, we may say what height of the liquid in question lies above the orifice in question, and by its Weight forces liquid out through that orifice. The usual way of giving the last-mentioned particular is to state that the Head ol ${ }^{2}$ the liquid is so many cmo or inches: and the liquid is said to issue from the orifice under a certain specified "head," H.

If p be the Pressure (in units of force per unit of arca, dynes per sic. cm.) and H the equivalent Head of liquid (in cms.),$p=$ Hpg dynes per sq. cm., where ρ is the density of the liquid and y the local acceleration of gravity. The Pressure on the orilice is, accordingly, greater in a heavy liduid than in a lighter onc under an equal Head.

According to what is known as Torricelli's Law, a jet of liquid issues from an orifice with a velocity exactly the same as that which any given portion of the licquid would have acquired if it had fallen freely
downwards from the level of the surface of the hiquid to the level of the orifice. The actual speed is such that this law is very nearly obeyed : there is hardly one per cent of error in the result.

This speed is $v\left(\mathrm{~cm}, \mathrm{per}^{\mathrm{er}}\right.$ sec. $)=\sqrt{2 \times 981 \times 11}=44 \cdot 3 \sqrt{\mathrm{H}}$, where H is measured in cms. It will be observed, on looking at this formula, that nothing is said in it about ρ, the density of the liguid ; the fact is that the velocity n, for a given lrear H, does not lepend on the density ρ; the velocity of the outflowing stream will be the same whether we fill our given tank to a given height with water or with mercury. Though the driving pressure is greater in a heavier fluid, the inertia of the mass to be set in motion is increased in precisely the sane ratio: and thus nothing is gained in speed by endeavouring to utilise the greater weight of the heavier ligquid, so long as the liquid to be driven is the sane as that whose weight drives the strem. If, however, we try to drive a lighter liquid in a stream by means of the fall of a heavier one, we may give the lighter lipnid an extreme velocity : for example, we nay fill a two-corked flask witl water and fit a fine nozzle into one eork and a fumel into the other: then on pouring mercury into the funnel, the water will rush with great velocity through the nozzle. What potential energy the mercury has lost in falling the water has gained : and as the mass of the water per unit of volume is smaller, its velocity must be greater than that of the mercury. The water rises to a height greater than that from which the mercury had fallen. The Velocity of Outflow does depend, however, inversely on the square root of the density of the liqnid exposed to a given actual driving pressure: under a given Pressure a liquid four times as heary will flow only onehalf as fast. It also depends on the square root of the driving pressure, so that a liquid under a four-fold pressure will flow twice as fast.

All this applies, so far, to jets of liquid; and in jets of liquid we have certain peculiarities to remark.

Jets of liquid mostly assume a parabolic form as they pass through the air, because any given portion of the liquid begins to fall as soon as it is free to do so: the onward morement possessed by it as it left the orifice, componnded with the accelerated downward movement due to its free fall under gravity, results in each such portion travelling in a parabolic math : and we see a series of such portions simultaneously ; so that the flow takes the form of a continuous parabolic jet.

Again, the form of a jet is sueh that it is usually narrower at a little distance from the orifice than it is where it emerges from the vessel. But this narrowing may be greatly modified by the varions forms of nozzles, or ajutages, which may be fixed to the orifice. A short eylindrical tube may make this narrowing disappear:

Then when a jet has emerged into the air, as it falls it comes to fall more and more rapidly, and therefore tends to thin away; for the stream is accelerated and, as it were, stretched in its lower part. And it is hardly possible to prevent it from vibrating : but if it do so at all, any portion of the stream which is in vibration tends to oscillate in portions alternately thimer and thieker: and then, as the stream thins away, the oseillation overpowers the tenacity of the stream, and the stream breaks up into drops. These drops go on oseillating and changing their form as they fall. The phenomenon is one of free fall in air, and it does not explain the vibration of liquids in tubes, though this explanation has been suggested. It depends largely on the surface-tension of the liguid.

A jet sometimes seems to have a screw form. This will oeeur when the jet issues from a linear orifice. The jet is then flattened to begin with: but it tends, in virtue of its surface-tension, to become eylindrical. It therefore contracts as it travels: but the adjustment to a eylindrieal form overshoots the mark, and the jet beeomes flattened in a plane at right angles to the former. The consequence of this is that it again contraets, and again overshoots the mark : so that alternate portions of the jet are flattened in different senses, and any given portion of it oscillates through a number of different eross-seetional forms, while the jet as a whole seems, but is not, serew-shaped.

If, nextly, we have to do not with an orifice in the side of a tank, but with a pipe-for simplicity's sake, a horizontal pipe-leading from the tank, we find that the pressure within that pipe is not the same at all points. If it be a uniform pipe, smooth and rigid, we find that a series of little vertical branch-pipes, piezometer-tubes, will have water standing in them even

Fig. 117. though liquid flows along the main pipe EF ; and this water stands at heights which diminish regularly from
the tank to the ontlet, so that the upper ends of the columns can all le joined by a straight line, as in Fig. 117. All along such in pipee the velocity of flow is constant ; and the slope of the line (iP is also constant.

Take iny one piczometer-tule : water stands in that tube at a certain height; it does not fall away into the main stream ; up to a certain limit it is easier for water to climb up the piezometer-tulue than it is for it to flow on with the strean-up to a certain limit, but not beyond: and when that limit has been reached, it is easier for the water to flow alonr with the stream than it would lee for it to push or thrust more water up the piezometer-tube, against the downward pressure or Weight of the water which already stands in that tube. The Height of the water in any given piezometer-tube serves as a means of measuring the local pressure within the pipe; and if we look at the Pressure within the stream at any point as being "back-pressure" at that point, we see that it is the same thing as the local Resistance which the stream offers, at that point, to its own progress.

The Resistanee offered to onward Flow, and the eonsequent back-pressure, may be traeed to several eauses. Amoner these, one is the viscosity of the liquid. When a liquid flows, it always undergoes a Shear': eael layer slips over the layer next to it. In a tube eaeh such layer is tubular. The outmost tubular layer remains in contact with the wall of the pipe, and does not pass on, that is, if the wall of the pipe is wetted by the liquid. The next slips upon this, and the next again upon that, and so on ; so that the axial part of the stream moves the most rapidly : and in this axial part we see the redblood corpuseles travelling in eapillary blood-vessels. This slipping of one layer upon mother brings Friction into play; and to overcome this requires the applieation of driving pressure contimnously applied. The Work spent in overcoming this Frietion appear's as Heat in the liquid, which becomes more or less warmed.

Under a given pressure, the Quantity of Liquid which will pass through a pipe in a given time depends upon the amount of this internal Frietion: the less this is, the less will be the Resistance to
flow: and in i very narrow tube the law expressing the relation between this internal friction and the corresponding amount of How is a comparatively simple one: but in a wider pipe the amount of flow is interfered with by another circumstance, which is that in a wider pipe there are always swirls and eddies formed. These swirls and eddlies obstruct the onward flow, and induce waste of Encrgy in the production of Heat; and they are specially woll marked wherever the pipe suddenly widens or bends or divides into branches. They are also produced whenever the walls of the pipe are rough. Mere roughness of the walls of the pipe would not tend to displace a steady stream once set up ; but it tends to prevent the setting up of a steady stream, through defleeting the stream lines into one another and causing eddies, particularly when the driving pressure is itself variable or intermittent. Again, where the liquid does not wet the walls of the pipe, Work must be done in forcing the liquid along, past these walls; so that in this case we have surface friction ; and in order to overcome this, Pressure must be continuously exerted.

Let us now look at any given length, say 300 cm ., in such a pipe, and by means of piezometer-tubes find what the heights of the columns of liquid supported are, at the beginning and very near the end of the 300 cm . in question. Let us say that these are respectively 25 cm . and 15 cm . of water. We know that a column of 25 cm . of water corresponds to a pressure of 24525 dynes per sq. cm., and one of 15 inches to a pressure of 14715 dynes per sq. cm. The Difference of Pressure per sq. cm . is 9810 dynes along the whole 300 cm ., or a difference of $32 \cdot 9$ dynes per sq. cm . along each single linear centimetre of the pipe. This Difference of Pressure per linear cm. or, generally, per. Unit of Length, is directly represented by the slope of the line GF (Fig. 117).

In calculations we would have to use this Fall of Pressure, or of remaining Resistance, per unit of length. This is otherwise known as the Pressure-Slope. Then the velocity v of flow of the stream would be, according to the formula in use, such that the Pressure-Slope, in proper units, is equal to $\rho g\left(a v^{2} / r+b / v^{2}\right)$, where ρ is the density of the liquid, g the acceleration of gravity $(=981), r$ the radius of cross-section of the pipe, and a and b are constants which must be ascertained by experiment. We do not propose, however, to take in hand any algebraical calculations of this kind ; and it will be sufficient in the meantime to examine the figure itself (Fig. 117) a little more closely, and to come to some conclusions as to its possible variations.

As an experimental fact, the pressure in the first
piezometer-tube of all, just outside the tank, is not so great as the pressure within the tank would have been, at the same level, if there had been noflow. The liquirl in the first piezometer-tube, therefore, stands at a lower level than the liquill in the tank itself. This is partly due to eddies at and about the inlet of the pipe EF: but the fall of pressure due to this may, for most purposes, be neglected. The main cause, which we shall treat as the only cause, of this fall of level is that the liquid loes acquire a certain Velocity, and issues at F as if a certain amount of the original head of water were used up in giving it that velocity. It is as if F were an aperture in a vessel from which liguid was issuing in a jet with the observed velocity r : then by Torricelli's Law, the Head of liquid which must be maintained in that vessel, in order to maintain that velocity of flow, is $\mathrm{H}=v^{2} / 1962$. This amount of Head has to be subtracted from the original or driving Head of liguid in the tank; and it is only the remainder which can possibly be effective in producing pressure within the pipe EF.

If we completely drop from view all Eddies and all their consequences, we reach the statement that the pressure in the pipe as near as possible to the tank corresponds to a certain portion of the original or driving Head ; that the actual velocity of flow corresponds to another portion ; and that these two portions completely account for, and that their sum is equal to, the original Head of water in the tank. The portion of the original head which corresponds to the actual Telocity of flow may be called the Velocity-Head; the portion which is expended in overcoming the Resistance to outflow from the tank, or in setting up the varions Pressures within the pipe, may be called the Pressure-Head, or the Resistance-Head; and these are together equal to the original total Driving-Head.

Obviously, so long as we keep the Driving-Head the
same, if we diminish the Resistance-Head we increase the Velocity-Head; and vice rerste. If we increase the VelocityHead, we of course increase the Velocity of outllow: if we increase the Resistance-Heal, we increase the Resistance and the Pressures within the oullow-pipe. Again, if we increase the Resistance offered by the pipe to onflow through it, we increase the Resistance-Head at the expense of the Vclocity-Head, and therefore at the expense of the Velocity of outflow : and this increasc in the Resistance offered by the pipe may be effected by narrowing it, or by lengthening it.

We have therefore to considcr (1) the Driving-Head, which corresponds to so much driving Pressure or Force applied to the liquid in the pipe ; (2) the VelocityHead, which corresponds to the actual Velocity of the liquid in the pipe (this velocity being proportional to the squate root of the velocity-head) ; (3) the Pressure- or Resistance-Head, which is measured by the height of liquid column sustained in the first piezometer-tube ; (4) the lateral Pressures at the piezometcr-tubes, which pressures sink uniformly from a pressure corresponding to the full value of (3) in the first tube, down to a zero value at the orifice of outflow ; and (5) the Resistances to onflow, which depend on the conformation of the pipe itself and which arc measured, at any point, by the value of the lateral Pressure at that point.

Thesc things depend on one another. Let us, without altering anything else, increase (1), the DrivingHead; then both (2) and (3) are increased, and aecordingly both the Velocity of onflow and the lateral Pressures are increased ; and the line of pressure-slope, GF (Fig. 117), becomes steeper.

The inerease of (2) is proportionately a little greater than the inerease of (3) ; so that (2) gets a little more than its proportionate share of the inerease in (1).

It will be kept in mind that the Velocity-Head is proportional to the squure of the Veloeity; so that if we quadruple
the driving pressure we do a little more than domble the relocity ol flow in a lipe, while we at the same time do a lithe less than futheruple the pressures.

If the Jriving-Ifend be diminished the velocily and the pressures fall off ; and the velocity-head falls somewhat more rapidly than the pressure-head.

Next, with everything clse as at frost, let us increase (5), the Resistances, by narrowing or lengthening the pipe: this olstructs the onflow, diminishes the velocity and the velocity-head, and correspondingly increases the Pressure-Head and the lateral Pressures. If, on the other hand, we witen or shorten the pipe, we increase the onflow, and thus increase the Velocity and the VelocityHead, and diminish the pressure-head and the pressures.

Next let us both increase the driving pressure and, at the same time, increase the peripheral resistance by natrowing or lengthening the pipe; we are sure to raise the pressures in the piezometer-tulues; and we may increase the Telocity or, by increasing the resistances sufticiently, or by keeping down our increase of driving pressure, we may on the whole dininish it ; but it will be possible to adjust the peripheral Resistance to the actual increase of driving pressure (or else to restrict the increase of driving pressure in accordance with the actual increase of peripheral resistance) in such a way that the velocity of onflow may remain as before.

Thus when the placental is added to the ordinary circulation, the flow of blood in the blood-vessels is less easy; the heart must produce greater pressures, and therefore must work harder, in order to keep, up the same stream ; and it tends to become hypertrophied.

If we reduce the driving pressure and at the same time shorten or widen the outhow-pipe, we are sure to reduce the piezometer-pressures; we mar, 1, snfficiently shortening or widening the pipe, on ly limiting our reduction of driving pressure, increase the Telocity, or by not doing so we may decrease it: or, by due
adjustment of the peripheral Resistance to the actual decrease of driving pressure (or else by restricting the diminution of driving pressure in accordance with the actual decrease of peripheral resistance) we may leave the velocity of onflow as at first.

Next let us increase the driving pressure, and at the same time diminish the peripleral resistance by widening or shortening the outflow-pipe. We are sure to increase the velocity of flow : and by sufficient widening, or by keeping down the increase of driving pressure, we may diminish the Pressures: with insufficient widening or excessive increase of driving pressure, the pressures are on the other hand greater than at first ; but by suitably adjusting the widening or shortening to the actual increase of driving pressure (or else by restricting the increase of driving pressure so as to suit the actual widening or shortening) we may cause the pressures to remain as at first.

If we diminish the driving pressure and at the same time increase the peripheral resistance, we certainly diminish the velocity of flow: and we may increase the Pressures by sufficient narrowing of the pipe, or by limiting the decrease in driving pressure, or may diminish them by insufficient narrowing, or by allowing the driving pressure to become too small ; but we may again adjust the narrowing, or restrict the diminntion in the driving pressure, so as to leave the pressures as at first. Hence, if we increase the peripheral Resistance and thus diminisl the onflow, but wish to keep the Pressures the same, we must diminish the driving pressure; but we thereby still farther reduce the flow.

The heart has an automatie regulating mechanism of this kind: when the blood-pressure in the blood-vessels is too high, the nervous system makes the heart beat less frequently.

Olservation of the Pressures or of the Telocity alone is therefore insufficient to give us full knowledge of the
variations in mechanism of this mature, as regarls the driving pump or the condition of the pipes themselves.

Unchanged pressures with diminished velocity llante diminished driving pressure and a pressure-comprnsating increase of peripheral Resistane; unchanged pressures with increased velocity indicate increased Driving l'ressure with a pressure-compensating deerease of resistance.

Unchanged velocity with diminished pressures denotes diminution of driving pressure with a velocity-compensating diminution of resistance: with increased pressures it denotes increase of Driving Pressure with a velocity-compensating in crease of Resistance.

Increased pressures with increased velocity indicate increase of Driving Pressure, not fully compensated as regards pressure by a sufficient fall, or as regards velocity by a suflicient rise, in the resistance. With decreased velocity increased pressures indicate a rise in the Resistance, not fully compensated as regards pressure by a sufficient fall, or as regards velocity by a sufficient rise, in the driving power.

Decreased pressures with increased velocity denote diminished Resistance, not fully compensated as segards pressure by a sufficient rise, or as regards velocity by a sufficient fall, in driving pressure. With decreased velocity decreasen pressurcs indicate decrease of Driving Pressure, not fully compensated as regards 1 ressmre by a sufficient rise, or as regards velocity by a sufficient fall, in the resistance.

If the pipe be not uniform, but increase in its diameter, being conical in its form, the velocity of the stream falls off, and the pressure either increases or else falls off less rapidly than it would do in a uniform pipe. When the flow is from a narrow into a wide pipe without any gradation of diameter, the pressure is greater in the wider pipe than it had been in the narrower one. The reason of this is that whereas we might have expected the wider pipe to offer a facility rather than an obstruction to the onward flow of the liquid, the reverse is the case: the rapidly moving liquid in the narrower pipe is hurled against the comparatirely stationary liquid in the wider pipe, and is brought to a comparatively-slow velocity, with formation of swirls and eddies. But the pressure so reached must always
be less than that near the tank, else the liquirl would not flow along the narrower pipe at all. If the pipe expand gradually, in a conical form, and mot abruptly, the condition is more farouralle to the maintenance of a stealy How ; the strean-lines may simply diverge withont formation of eddies ; and in that case the pressure may fall oft steadily but more slowly than before, or may even remain constant thronghout the length of the expanding tube.

If the Driving Pressure be not uniform but Tariahle, the pressures in the pipe and the velocities in the strean follow the variations of the driving pressure.

The variations of pressure in the pipe are, however, somewhat smaller, and those of the velocity of the stream are somewhat larger than the variations of the driving pressure would themselves lead us to expect.

If the Driving Pressure applied to a liquid within a rigid pipe be itself intermittent, the tendency is to move a utuantity of liquid en masse at each impulse, like a poker struck endwise by a hammer. Au incompressible fluid wonld move in this way within a rigid tube: any actual lifuid is slightly compressible, and its movement is not quite so abrupt: but if the pipe be rigid, or practically rigid, this tendency is always well marked, as is the case in atheromatous arteries, which are distinguished from normally extensible arteries by the abrupt onflow of blood within them.

If liquid, flowing steadily along a rigid pipc, have its onward flow abruptly eheckecl, as by the sharp closing of a stopeock, the onflow may contime in virtne of the onward momentum of the flowing lirquid : and the pipe may by this means be exposed to a very severe internal pressure before the onward motion of the liquil is arrested. This may cause severe jolts of the waterpipes within a building. The prineiple las been utilised in the Hydraulic Ram, in which a stream of water is altermately set up anl suddenly cut off. At each eut-off the pressure becomes very high ; the water is thus enabled to force a valve, which it otherwise could not displace: it enters a small chamber containing a limited volume of air; and the air, beconing com-
pressed, in its turn drives the water ont at a high monn pressure throngh ant exit pipe.

When the pipe though rigid is not straigh, but contains a bend, this hend oflers an ohstruction to the flow. The liquid is driven up arainst it and

Fig. 118. forms eddies; and thus limergy is waster]. After this obstruction has bcen prasser], the liquid is at a lower pressure than it lat been immediately before reachins the bend ; lout the slope of the line (if is equable in all such portions of the pripe as are straight and monterrupted, and uniform in diancter; for the actmal velocity of llow is the same throughout each such porion.

If in such a case the driving pressure be intermittent, the bend is, as it were, hammered by the abrupt impact of the liquid; and if the bend be to sone extent distensible, it is driven forward by the blow. This contition is exemplified by the locomotive pulse in atheromatous arteries: the radial artery seems to plunge forward at ench pulsation.

Where we have to do not with an monbranched but with a branched pipe, there is a new element to be considered, namely, the total amount of surface-area of the walls. A proportionate increase of surface-area dutermines an increase in the resistance offered to the onward How. It will not do to say that the liguid has to rub against this increased surface; the liquid rubs only against an immovable layer of liquid which adheres to the walls of the channel : but in every case, the greater the surface-area in proportion to the cross-section of the chamel, the more play is given to the viscosity of the liquitl, and the more hampered is the onward flow. On the other hand, a branched system may present on the whole a sreater cross-sectional area to the onflowing liquid: the tendency of this is to diminish the total Resistance oflered by the path which the liguid has to traverse, and
thus to dininish the Pressure near the tank, and to increase the Velocity of outlow from the tank. At the same time, if the total cross-sectional area is being increaser, there will be a slowing-down of the stream at the branching, and therefore a tendency to increase the Pressures; and conversely, if the branches come together again, so as to converge upon a narrower area, the Telocity will he increased and there will be a tendency to dininish the pressures. Accordingly, if a pipe brancl out into a systen of numerons pipes which, taken together, present a wide channel for the stream, and if these pipes umite to furm again a single channel of the same dimensions as the first, the pressure at the midpoint of the system is greater than the average pressure throughout the whole system.

This is exemplified in the circulatory system of vertebrates, in which the pressure in the capillaries is greater than half the mean pressure in the aorta.

If we have two such systems, one larger in scale than the other, but about the same in the relative proportions of the parts, measured linearly, so that the one may be reasonably regarded as a model of the other, the Resistance offered by the one system to the flow of liquid may be approximately the same as that offered by the other, if the V elocities be the same in both. Thus an elephant and a mouse may have approximately the same blood-pressure in the aorta. The monse has the smaller vascular surface-area for the blood to be forced past: it has the smaller distance to drive the blood from the heart to the extremities; but the elephant has the compensating advantage of the larger blood-vessels and a wider vascular system.

Suppose a tulue to branch into two tubes of unequal dimensions: the resistances offered by these tubes will in general be unequal: the pressures within the entrance to cach will be unequal ; and the flow through the tubes will be unequal. The greater flow will be along the tube which offers the less resistance.

Suppose again that in a branched system, in which a flow has been set up, some of the branches become narrowed or obstructed. The narrowing of any part
of the total system diminishes the carying power of the whole, ind the total onflow is in the whole diminished. The pressures throughout the whole system are increased, in the ummormwerl as well ins fin the narowed branches. So far as regards each of the unnarrowed branches, the slope of the line (il becones steeper in it ; and the velocity of the flow through cach unnarrowed branch is therefore increased, just as if the Driving Pressure itself lad been increased. This state of things is of importance in refurence to the pathology of congestion in the circulatory system.

In all flow of licuid through sufficiently wide tubes there are swirls and eddies, and the strean-lines are not truly parallel to one another even in a miform tulse: and the flow is therefore not truly steady. It is unly perfectly steady in sufticiently narrow tubes. For water a tube of less than $\frac{1}{50}$ inch diameter will be sutticiently narrow to allow steady flow: for treacle a tube an inch in diameter would do the same thing. This steadiness in very narrow or "capillary" tubes, and the want of steadiness of flow in pipes of ordinary size, result in this, that the amount of outflow in the two cases is regulated by very different laws.

In capillary tubes it is proportioned not to the square but to the fonth power of the diameter of the tube; it is directly proportional to the driving pressure, not to its square root; it is inversely proportional to the length of the capillary tube; and it is inversely proportional to what is known as the Coefficient of Viscosity. That is to say, the more viscons a fluid is, the less of it can you drive through a capillary tube under a given pressure in a given time ; and the comparative viscosities of two liquids under the same conditions, or of the same liquid under different conditions, may be eompred by seeing what quantitics can thus be forced through a capillary tube in a given time. The capillary tube cmploycd mnst be of adequate length, otherwise the conditions come to resemble those presented by a wide tube.

The viscosity of a liquid is usually less when it is warm: and Dr. Grahan brown has found that the blood, at fever temperatures, is less viscous than it is at normal temperatures; and
that to such an extent that the stiain mon the heart in kecpine ul the circmation is actually lessened by reason of the dinimntion of viscosity induced by an abmornatly ligh temperature.

Even when a stream las been set up in a capillary tube, it is to be obscrved that if the speed of onflow be suflieiently increased, the stream may break up into edlies ; and thus one and the same tube may act as a wide tube for rapid streans, and as a narrow or capillary tube lor slow streams.

In any case where the pressure at any point in a stream has to be ascertained, it will not do to stop or obstruct the stream in any way. The strean must be allowed to flow on uninterrupted and unobstructed : and the apparatus employed must be so contrived. The piezometer-tubes employed must, therefore, not encroach in the least on the lumen of the tube.

Where it is necessary to measure the velocity of a strean various methods may be adopted, of which the following are the principal:-

1. Optical.-Determination of the speed of small particles floating in the liquid ; e.g., red-blood corpuseles in the capillaries. This is only an approximate method. If the particles be of the same density as the liquid they will roll into the axial stream, and the larger they are the more are they retarded by the peripheral parts of the stream ; if not, they will float or sink and roll upon the walls of the vessel, and their speed will be affected by rolling friction, which depends on thein relative lightness or heaviness and also on the stickiness of these particles or of the walls of the vessel or tube. Alterations in the density of the blood may cause red-blood corpuscles to float or sink, and therefore to roll ; and the blood-vessels may become abnormally sticky, so that the corpuscles tend to block up the bends.
2. Chemical. - The time is found which elapses between the introduction of a dissolved substance into the stream, and the arrival, at a deternined point, of liguid in which that substance can be detected by chemical means, or else by tlie alteration of the liquid in respect of its electrical conductivity.
3. Volumetric.-(a) Cutting the vessel and measuring the outliow; but this disturbs the pressures and increases the velocity, while if the stream be a closed circuit loss of liquid deranges the whole working.
(b) Intcrposing a tube of known cubical capacity, containing
liquid, in the comse of the strean, and dinding how bong it takes to replace the lidnid in the tube by lignid freme the shean. 'Hhis is not easy to find, and the interposition of the additional Resistanco listurlos the velocity of "llow.
(c) Making the tube of mothor (b) it vessel ol lange rapurity ant suall resistance, and so aronging the apparatns that when the vessel is on the point of beines completely enptied the course of liquid in it can be suddenly reversed. This is repeated several times, and the time necessary to pass a given hulk of liquid through the cirealation is ascertained (Ludwig and Dogicl's Stromuhr).
4. Mechanical Methods.-(u) A very small pendulum swong in the strean is deflected by it in aceordance with the Velocity. This is applied in the engincers' bydrostatic pendulum and, for physiological phrposes, in the hremotachymeter; and in the hæmodromometer the pendulum itself consists of the lower end of a needle thrust througl the walls of a blood-vessel.
(b) Pitot's Tubes.-I'wo tubes (Fig. 119) inserted into the stream; one with its lower end facing the stream,

Fig. 119 the other turnel away from it. The columns of water in A and B are at clifferent heights: and the difference of height depends upon the velocity.
(c) Wheelwork, like gas-meters. - Λ fan or turbine is worked by the stream, and an indicating train of wheelwork works a dial-pointer.
(d) Venturi's Water-meters. - The piezometer-pressure at a wide part of the tube is less than that at a narrow part, to an extent which depends on the veloeity.

All these mechanical instruments nust lie graduated by exposing them to streams of various known velocities, and marking the corresponding positions at which the reeording index stands.

The work which is expended in driving a given quantity of liquid in a jet or stream is equal (in ergs) to the product of the Weight of that liquid (in dynes) into the Driving-Head. (in cms.) ; or, otherwise expressed, the product of the Driving Pressure (in dynes per sq. cun.) into the Volume (in cub. cm.) of that liquid. In either case, jet or stream, the Driving-Head is the total head, that within the tank.

For example, let the question be to ascertain what Work the human heart does. The data are: mean pressure in the left
 170,722 dynes per stp. cm. =at driving heat of 165 em. of blood; liquid propelled at euch systole 170.6 cmb . cm. or 180 grammes, the Wreisht of which is $7.50 \times 981=177,550$ dynes. 'lhen the Wrok done at each systote is 177580×165, or $170722 \times 170 \cdot 6$, both $=29,128000$ ergs. 18 there are 72 pulsations per minute, the work per mimute is $(29,128000 \times 7 \cdot 2)$ ergs ; nearly 150 foolpounds ber minnte, or abont $\frac{1}{2}$ horse-power on the average, a degree of activity which wonk raise the heart's own weight abont 22,000 fect in an lonn, or raise a $200-1 b$. man abont 45 feet in that time. It will be ohservel, however, that the heart has not 60 seconds per minute in which to do this work: its contractions only ocempy on the whole abont 21 seconds ont of cach minute; so that its mean aetivity cluring its actual contractious is as much as sorse-power.

Part only of the work which is done by the driving pressure in keeping up a stream in a tube is converted into kinetic energy in the liquid, the Energy of Flow ; the remainder is transformed into heat, and the liquid is warmed.

Thus far we have considered the flow of liquids in pipes or tubes which are rigicl or practically so. In many important cases-c.g. the arteries and other vessels through which blood is propelled by the heartthe walls of the ressels are not rigicl, lut are more or less elastically distensible. We have therefore now to consider the Flow of Liquids in such elastic tubes.

In the first place, an elastic tulse through which a constant flow is maintainel comes to act practically like a rigid tube. The internal pressure of the stream has a certain ellect in dilating the tube ; and this eflect is greater where the pressure is greater; lut a condition of equilibrium is soon attained, and is thereafter maintained ; and then there is no variation in the dimensions of the tube so long as the steady flow is kept up.

Next, if the flow be deliberately intermittent, each inflow dilates the tube, and the dilatation dies away as the inflow ceases. The tube itself thus has work done upon it at each inflow ; and it then restores that work as it
regains its primitive form when each inllow ceases. But let us suppose that the successive inflows follow one another up with a certain rapidity. 'Then lefore the effect of one inflow has died away anotleer has ahready begron. The tube is thus never allowed to regain its normal form completely ; and the ontlow and pressure never sink to nothing. There is therefore always some degree of continuous ontflow, thongh there may be throbbing and spurting as in an artery when cut; and the stream may thus present variations in velocity and pressure, which keep time with the rhythm of the intermittences of the driving pressure applicd. The more rigid the tube, or the wider or the shorter it is, the more difficult is it to keep up any degree of continuity of ontflow, and therefore the greater must be the frequency of the intermissions; and, on the other hand, the more distensible the tube, or the greater the resistance offered to flow through it, the less fresuent need the intermittences be. If, however, we look into the matter a little more closely, we see that it is an inadequate statement of the fact to say merely that the tube dilates under the sudden and brief impulse of a momentary driving pressure. It is, in the first instance, not the whole tube but the part of the tube nearest to the source of driving pressure which dilates: a distant portion of a long tube may remain at first unaffectel, and if it be very distant, it may be some time before any disturbance reaches it. The tube is thus locally distended; a pouch is formed: but this pouch tends to regain its primitive form: the elasticity of the walls of the tube comes into play; and the liquid in the pouch is squeezed forward along the clastic tube. The next moment, the liquid which has been forced into the tube is found occupying a longer and slenderer pouch farther along the tube; and the dilatation of the tube thus seems to travel along in the same direction as the flow of liquid, the pouch becoming continuously longer and slenderer as it travels.

Suppose that instead of a sudden increase of pressure we have a sudden defect of pressure in the tube, Which is still supposed to be filled with the liquid ; the tube partly collapses in the neighbourhood of the source of defect of driving pressure, and liquid is withduwn from it: but the tube tends to regain its primitive form, and the collapsed form is passed on from portion to portion of the tube. The collapsed form is better marked at finst than it is when it has travelled for some distance ; as in the previous case, that of dilatation, the clange of diameter becomes smaller, but at the same time lunger and longer portions of the tube are aflected, as the disturbance travels along the walls of the tube. The flow of liquid, to make up for what has been withdrawn from one end of the tube, is in this case in a direction opposel to that in which the distortion of the walls of the tube travels.

If the finger-tip or the extremity of a lever be laid on such a tube, the arrival of the dilatation or expansion can be felt or observel: and the dilatation or expansion (followed by a more gradual waning away of the distortion) travels like a wave, which wave is called a PulseWave. The speed of travelling of this wave varies accorling to circumstances ; it is greater the greater the thickness of the wall: it is greater the greater the resistance offered by the substance of the wall to stretching; it is less the greater the diameter of the tube: and it is less the greater the density of the liquid within the tube.

The length of a single pouch or pulse-wave in such a tube is the product of the speed of propagation of this kind of disturbance into the time during which the inflow is being kept np: for example, the tendency is for cach pulse-wave in the bloodvessels of a man to have a length erpual to the produet of the velocity of propagation (10 to 18 metres per sccond) into the time of systole of the heart ($\frac{1}{3}$ second), or from $3 \frac{1}{3}$ to 6 metres. Of course there cannot be eomplete pulsc-waves of such lengths as these in the human body ; and what happens is that the blood-
vessels never do relax and assmme a completely normal form, for the nest fulse-wave is upon them berore they have done so. The arteries are thus always in a state of tension, thomy this is wariable.

In the cuse of indiarubber, the clasticity, or sustance to stretching, remains much the sane whether the defornation of the tube be great or shall: and hence larser :and shaller ponches are perpagated at ahout the same speed ; but in the case of arteries the conditions are different. In an artery, the hom: it is stretched the more it resists stretehing; a wide dilatation is therefore propagated more rapinlly than a narow one; a full pulse travels more rapidly than one of surall expansion.
'To arrest the passage of a polse-wave a certain l'ressure is required. When this pressure is applied by means of an instrument of the nature of a spring lalance, we have the Sphygmo meter, used in measuring the pressure necessary to extinguish the radial pulse.

In a branched system with momerons branches the suall branehes wear down the pulsations, ank the pmlse-wuve disappears. Thus in the arterial blool-vessels we have pulsations; in the capillaries and veins normally none, excopt in such cases as that of the activity of a salivary ghand, during which the arterioles are dilated, and there is a "venous pulse" continued into the corresponding veir.

A driving pressure gradually applied will cartse a correspondingly gentle slope at the front of the pulsewave : a pressure abruptly applied will cause an abrupt local exprasion of the tube and a steep-fronted pulse-wave. Rigidity of walls favours shallowness of the ware, for then the rate of propagation is great, and the dilatation at any one point is correspondingly small. Peripheral resistance hampers onward llow, and therefore favours wide pouching of the elastic tube and a slow disappearance of the pouch.

Still closer inquiry shows us that we generally cannot confine ourselves to single pulse-waves in elastic tubes. When an elastic tube is pouched by the sudden inflow of liquid, the elasticity of the tube brings the tabe back to its normal dimensions ; and if the onflow be restricted, this process will be a gradual one, so that the tube steatily regains its normal form. But if the onflow be ease, if
there be little obstruction to the escape of the vigorousty injected liquil, the walls of the tube, in promptly regaining their normal position, generally overshoot the mark. At the stme time the lifuid itself tends to do the same in rirtue of its inertia. On the whote, the portion of the clastic tube previously pouched becomes more or less collapsed for the moment. The tube then regains its form: lipuid rms back to fill it; but this may argin orershout the mark. A series of secondary oscillations may thens be set up.

The human pulse shows phenomena of this order. Somntimes the first of these secondary oscillations is not ineomparable with the primary pulse-wave itself. This condition is apt to occur when the walls of the vessels offer much resistance to being stretcherl. In all cascs, however, the seemed, third, and succeeding secondary oscillations are of very minor importance.

It may perhaps be noted that in the arteries there sometimes is, between the primary wave and the first seeondary wave, a sinkins and a sudden recovery of pressure whieh gives the apperrance of an interpolated undulation, and makes the prilse "dicrotic." There has been some discussion as to the eanse of this: and it has been explained as being duc to the sudden cessation of pressure excrted by the ventricle of the heart, followed by the sudden closing of the valves, which suddenly arrest back-flow from the aorta or pulmonary artery into the corresponding rentricle. The conditions for this are that the arteries be highly distensible and elastie, the mean pressure low, and the heart-stroke firm.

In any event the scemdary waves are not so high as the primary : and hence white in earutchone tubes they travel at about the same specd, in arteries the secondary waves travel more slowly than the primary, so that they lag farther and farther behind them.

The elasticity of a tube may have still further consergences. Suppose that a pouch travels along to the end of a long tube, and that the lifuid does not there find a ready outlet, the tube will locally get rid of its deformation by reflecting it backwards along the tube, and the front of the reflected pulse-wave may meet and complicate the hinder part of the prinary pulse-wave: yet under such
conditions the actual small outlow at the distal end of the iulse may be exrionsly miform. And more, the amount of outflow from such a fubs may, if the pulsations be frecpuent enough, be more abundant than from a risid tube of the same normal widith, ant bearing an exptal terminal aperture, when exposerl to exactly similar conditions. The dilated elastic iube offers on the whole less resistance to flow of liquid along it to the terminal aperiure than the unwidened rigid iube does: and thus it gains an advantage over the rigid iulbe. Consequently, if sueh a disteusible tube should become rigid, it would be neeessary, in order to keep up the same Flow, that the driving pressure should beeome greater.

This necessity aecounts for the hypertrophy of the left ventriele of the heart when the distensible arteries beeome comparatively rigid through atheroma: for the heart has then to work harder in order to keep up the same flow, and its left ventriele, which drives the blood through the arteries, eonsequently becomes of abnormal size.

Solidification of Liquids

When a liquid becomes cold enough it will solilify or "freeze." Even liquefied air will do this, and beeome like snow.

In many eases we find that our ordinary temperatures are low enough to enable the solid form or state of a substance to have become the one most familiar to us. For example, we usually see iron as a solid ; and we have to go to an iron foundry in order to see it as a liquid. In our temperate elimates mercury is a liquid; but in an Arctic midwinter it is a solid, and can be hammered like lead.

When a liquid beeomes a solid its moleenles largely, if not wholly, lose their power of slipping past one another; and their mean free path must beeome very restrieted.

Solids

A sulstance in a perfectly solid state would possess the following characteristics: (1) a definite Form of its. טพ゙n ; (2) Resistance to Deformation ; (3) Permanence of Form so long as the surrounding conditions remained unchanged. A Solid would not continuonsly flow as water or treacle will ; it has a form of its own, and does not necessarily come to fit the vessel in which it is placerl, as water or treacle do : much less will it occupy it wholly, pressing against all its sides, as a Gas will do.

There are, however, many substances, which we call Solids, which do continuously flow, though extremely slowly, innler the influence of sufficient causes : cobller's wax, sealing wax, will flow down hill: hot glass, paraffin, wax, selenium, guttapercha, Canada balsam, a mixture of glue and honey, all soften and become mable to retain their shape long before they positively melt by heat ; even metals, exposed to sufficient distorting stresses during protracted periods, may slowly yield and alter their shape. During the moulding of a bullet in a bullet mould, during the stamping of a coin at the mint, the metal is being so distorted that its particles flow past one another ; and this flow is kept up until the metal has, under the Pressure excrted, flowed into every crevice of the moulid or die. Such solids are said to be imperfectly solid, or cuasi-fluid, or plastic. Some metals can be drawn into wire by being pulled through small holes in a hard steel plate: here the molecules of the metal pass one another, on their way through the steel plate, in the same fashion as the molecules of water do when issuing in a thin stream through a fine aperture in the botton of a tank. Such metals are said to be ductile. Some metals are extremely ductile, e.g. gold, silver, and platinum.

Platinum wires of excceding tenuity, and only distinctly visible when made redhot in a flame, arc made, as for usc in the micrometer eyepiece of a microscope, by constructing a thick
 fineness, and removing the silver loy innersion in nitric acid.

Again, some Solde can bu deformed by the hatmmen withont heaking at the elfges: gold an be beaten to geld leat of extreme tenuity ; and sum substances ane said in be malleable. During the impart of the hammer the action is one of Flow, producing an irreramible deformation. Other substances there are, such as antimomy, fianman, Ghas, which ty to pieces at the first lunw of the hammere, ant are said to be fiagile. From thase instances it will be seen that the distinction between a Sond and a Lipuid is a matter of degree; and some substances stand in the burderland between solids and hiquids.

Solids differ, again, in their velative hardness and softness. The eriterion of these propertirs is, that of two sulistances, that which is saicl to be the harder can scratch the other : and in this sense dimnond and carburumiun are the two hardest substances known.

The determination of hardness is aflectel somewhat ly the form of the bodies: thus a pin can the made to serateh glass, though glass is harder than pin-metal: and if the relative movement be very rapid, very hard substances may be cut into, as in the sand-blast (a stream of sand madly blown timough a tube), which can cut through rocks and even through stech.

Most Solids are not without some degree of porosity. Hydrogen difluses through bakel unglazed clay, and wind can even blow throngh bricks if mpainted : and earthgases can travel even through hydraulic cement if not tarred. Mercury can be squeezed through chamois leather : water can be squeezed through gold or lead : and petroleum soaks through iron.

The special properties of Solids seem to lo due to the arrangement of their molecules. These appear to lee more interlocked or mutually connected in some way than they are in Liquids or Gases: and in this way they form together a more comected system. Even on bringing two solids together the particles may come within the

- phere of ane another's forers, and then it may be differntt to pull the two masses apart. Thus we hate cohesion of two masses of the same solit, as for instance where two perlectly smooth faces of glass on of frestly cut lead on of polished stee cohere with great tenacity when the air is sumeded out by pressure from helwem them; or where we have the eohesion of two white-hot surfaces of iron on platinm in the pucess of welding. We may also have adhesion between two different solids, as for example the athesion of glass to a dried-up solution of sumaralice, or the direct alhesion of silver to phatimm at $500^{\circ} \mathrm{C}$. From the same cause we have the tenacity of a steel wire, to which a great force must be applied lefore it can be broken by pulling it lenghwise ; and even such a substance as marine glue is very tenacious.

We often find adhesion of a solid to a moist smface; glass, hreathed npon, adheres to chmois leather, as is seen in the cleming of cover-glasses: and slight damping of a surface often greatly inereases the friction between it and a bolly slid over it.

Sometimes the Molecules are so aggregated as to form a system which is in unstable equilibrium.

If a little mass of fused glass be dropped iuto eold water the exterior is suddenly ehilled: the juterion has to aeeommodate itself to this as it best ean: it does so, so as to possess a greater volume than it normally wonld have at its aetual temperature : and when the produet, a so-ealled Rupert's drop, has one end broken off, the whole flies to powder. To prevent such strains as this existing within a coolel mass it must be annealed, that is, allowel to cool extremely slowly: large optical leuses are sometimes kept gradually cooling for weeks: the particles then andinst their mutual relations in the guasi-fthid or plastic state of the glass, so that when the whole is enoled there is no such strain. Steel, agam, is apt to present similar phenomena, and unamealerl stecl may be as brittle as glass: and iron castings, which are not usually amealed with special eare, are apt to snap and falt to pieces if they lee danaged, or if they be quenched with eold water when hot. Thick glass, hown iu the opeu air in the usnal way, is apt to he more or less in the coudition of a Rupert's hrop: anl the slightest scrateh will
olten shiver a tube of thick glass, or one presenting extrene variations of thickness: and the pactical rule is that apramatus of glass presenting this feature should never be rubberl with any metal harder than copper.

So long as a sulit remains unbroken or moteformed, its molecules seem to have no relative movement, such as that which the particles of a gas present.

This is, however, not absolutely the case. The particles of a solid do, of their own aceord, travel a litule; powders may act mpon one another ehemically to a slight extent when mixed, as if they were in solution: and if snlphnr and a powdered netal be mixed and pressed together, a certain proportion of the snlphide of the metal may be formed. Again, the surface of a solid is not indifferent to the chemical substances and compounds contignous to it; hot iron oxide gives off oxygen to hydrogen, and hot iron takes mp oxygen from steam; phosphorns absorbs the vapour of carbon disnlphide and liquefies; boxwood charcoal absorbs gases and causes them to combine chemically ; platinum black absorbs oxygen and hydrogen and causes then to combine, and it also has a powerful effict in promoting the clotting of blood. Such facts seem to show that the movement of the molcenles of a Solid, though limited in comparison with that of the molecules of a Gas, is limited merely and not non-existent.

Deformations of Solids

By the application of sufficient Deforming Force it is always possible to distort or deform a Solid more or less.

A Perfect Solid is an ideal not realised in practice. If such an ideal perfect solid were exposed to any deforming force or cause of deformation, the deformation set up would remain the same so long as the cause of deformation was kept up.

It is true that wires on which heary masses are suspended not only stretch at first, when the Weight exposes them to Tension first of all, but also go on stretching extremely slowly when the action is continued; and an analogons effect is observed in many other cases; but these effects are so small that it is more convenient to attribute them, as we have already done, to a certain degree of Flnidity existing even in the most
rigid solid. We therefore consider only the former of these effects, the doformation produced inmediately and once for all.

The deformation produced by a deforming force is proportional to the Deforming Force applied: Hooke's Law ; "Ut tensio sicnt vis." For example, if the weight of 1 kilogr. will stretch a given thick piece of indiarrober $\frac{1}{10}$ cm., the weight of 4 kilogr. will stretch it ${ }_{1}^{2} \mathrm{~F} \mathrm{~cm}$.

Deformations are of four main kinds: Shrinkage or Dilatation, Lengthening or Shortening, Shear, and Twist.

Shrinkage or Dilatation is scarcely entitled to the name of Deformation in the usual sense of the term. It means a change of volume ; and it may be brought about either by compression, through a hydrostatic pressure being applierl evenly all over the surface of the solid, or by a change in the temperature of the solid.

All solids shrink when compressed; and with very few exceptions, such as indiarubber, solids expand when heated and shrink when cooled ; so that bodies which when cold exactly pass through certain apertures, will not do so when hot.

Pressure.-If a solid be immersed in a liquid contained in a strong steel cylinder, completcly filled with the liquid and closed by a screw stopper, which is screwed in so as to put the liquid under hydrostatic Pressure, the solil immersed in the liqnid will shrink somewhat. Usually the Change of Volume produced is very small; but the "Compression" is the ratio between this change of volume and the original volume. Let the original volume be $10 \mathrm{cub} . \mathrm{cm}$., and let the volume become 9.999 cubic cm . : the change of volnme is 0.001 crb . cm . ; and the Compression is the ratio between the change of volume 0.001 and the original volume 10 , that is, $\frac{0.01}{10}$ or Tolom. Then, ncxt, we have to consider the "Compressibility" ; this is the amount of the Compression per unit of hylrostatic pressure applicd; that is, per sq. cm. of the surface. For example, if a compression of $\frac{10}{1000}$ be produced by the application of a uniform or hydrostatic pressurc of 1,000000 dynes per sq. cm., the Compressibility $=\frac{\text { "Compression" }}{\text { Pressurc applied per sq. cm. }}$
 of a substance has to be distinguished from an actual Compression protheed in a given mass of that substance.

Heating, - In a precisely amalngous mamer we give a name to the ratio betwern the change of volume and the original volume, when the change of tomperature is $1^{\prime \prime} \mathrm{C}$. ; and we call this the Coefficient of Cubical Expansion by Heat.

If a solid increase in volume from 1.0000 to $1^{\prime} 0009$ under a rise of temperatnre of $3^{\circ} \mathrm{C}$, the cocticient of culfical expansion hy leat is 0.0003 . If a block lue cut fiom this material, the volume of which is 10 cub. em., what will be its volmue at $15^{\circ} \mathrm{C}$.? The coeflicient of cubical expansion is 0.0003 ; and the increase of volume will be 0.0003 cub. cun, per cub. cur. per (legree C, or $0.0003 \times 10 \times 15=0.045 \mathrm{cub}$, cun, in all ; so that the volume will rise from 10 cub . cm. to $10 \cdot 045 \mathrm{cub}$. cmu.

Examples of Expansion by Heating.-The stopper of a stoppered bottle may be loosmed by winding string ronnd the neck and pulling it backwards ant forwards so as to develop Heat by Friction : the neck dilates before the strpper is affecterl.

When a flask is heated, it expmols as if it were solid throughout; if it contain lisuid, the liquid may first shrink back in the neck of the flask, on account of the dilatation of the flask: and it is only if the dilatation of the liguirl, when it does become heatcl, be greater than that of the flask, that the liquill will rise in the neck of the flask. To this cause we nay trace certain small errors of the Thermometer.

Heat applierl to thick glass makes the surface expand, while the interior is still unaffected; the glass breaks. If the glass be thin, as in a thin flask, there is no great diflerence in the expansion of different parts of the glass, and thin Hasks can be nsed for hoiling liquids in. Where the Coeffeient of Expansion by Heat is small, as in the zine-borate or the baryta-borosilicate glass used in Jena flasks, thicker flasks can be usel to the same purpose.

The Coefficient of Cubical Expansion by Heat may be found by fincling the Density of the substanee at different temperatures: then the volumes at the respective temperatures are inversely proportional to the densities ; and from the alteration of volume, the original volume, and the difference of temperature, the coeflicient of cubical expansion may be found,

Lengthening or Shortening is a change of length of a bar or rod or wire of a solid; and in any giren case the bar or rod or wire is lengthened or shortened by a certain fraction of its original length.

In the case of lengthening, this fraction of the original length is callel the Elongation protuced.

An elongation may be produced in two ways: (I) ly exerting a pull, or tension, on the solid; or ly a change of its temperature.

All solits lengthen when stretched; and with very few exceptions, such as intiarubber, solicl bars or wires lengthen when heated, and shurten when cooted.

Lengthening under Tension. - The stretching Force or Tension required to produce a given proportionate Elongation is the same, whether the rod or wire be long or short, so long as its thickness remains the same.

For example, if a rod of say 100 cm . in length lengthen by say 0.01 con., a rod of 1000 cm ., of the same thickness ank umler the same stretching-force, will lengthen by 0.1 cm ; the fraction, the "elongation," the ratio ${ }^{\frac{0}{10} \frac{1}{0}}$ or $\frac{0}{10} \frac{1}{0}$, remains the same.

If, however, we alter the stretching force applied, we find that the Elongation is proportional to the Force so applied ; and further, that the thimer the wire the greater the elongation produced.

But we have at hand a convenient means of allowing for the thinness or thickness of the wire or rod by specifying not the Total Force applied, but the pull or traction upou the wire, in dynes per square centimetre of cross-sectional area of the wire. Then we say that the Elongation is lirectly proportional to the traction.

If the wire be 100 cm . long and the extension be 0.05 cmn , then the "Elongation" is $\frac{0.05}{100}=$ g'vo ; anl if the 'lotal Force applied so as to produce this elongation be the Weight of 10 kilogrammes or 100000 grammes (so that the total force applied is equal to 9,810000 dynes), and if the thickness of the wire be such that its cross-sectional arcu is $1 \mathrm{sq} . \mathrm{mm}$. or $\frac{1}{10 \mathrm{O}}$ sq. cm., then the "Traction" is $\frac{510 " 00}{1000}=981,000000$ dynes per sq. cm. : and accordingly the Elongation ($=\frac{1}{2000}$) is equal to the Traction $(981,000000$) multiplied by a fraction, which fraction is equal to $19 \pi 2.00 \frac{1}{0}, 000000$. This last fraction is called the "extensibility" of the substance experimented on ; and the "Extensibility" of a solid is measurell by the Elongation produced by a unit traction (one dyue per sq. cni.)

Muscles have sreator extensibility when they are in a state: of physiological contraction than when they are at rest: and a muscle lumbel with it eertain weight and then stimmaterl to contract may actually lengthen for this reason. Aluscles also becone more extensiblo shortly after death.

In neanly all cases, when a wire or mod is stretched by lorce it thins out ; but there are exceptions to this. Cork, for example, if pulled upon and stretcherl, retains nearly the same diameter ; but this is a property closely related to the altogether exceptionally sreat dugree of Compressibility which cork is fonmel to present.

Lengthening by Heating. - In an analogous manner', we call the elongation produced by a rise in 'Temper"t ture of one degree Centigrade, the Coefficient of Linear Expansion by Heat.

This coeflicient is very nearly equal to one-third the coellicient of cubical expansion ; for if a cube clilate from $1 \cdot 0000$ to 1.0003 on being heated through $1^{\circ} \mathrm{C}$., any of its edges must lengthen from $1 \cdot 0000$ to very nearly $1 \cdot 0001$.

If a bar of $17 \frac{1}{2} \mathrm{~cm}$. in length, at a temperature of $0^{\circ} \mathrm{C}$. , be cut out of a substance whose coefficient of linear expansion is 0.0001 , what will be the length of the bar at $15^{\circ} \mathrm{C}$.? The inerease in length will be $0.0001 \times 17 \frac{1}{2}$, or 0.00175 cm . per degree C . ; and for the $15^{\circ} \mathrm{C}$., it will be $0.00175 \times 15=0.02625$ cm. The bar therefore assumes a length of 17.52625 cm .

The coefticient of linenr expansion of a solid nay be found hy direct observation. The amount of lengthening of a bar or rod, heated to a known temperature, may be measured directly with the aid of a traversing bar and micrometer ; or it may be made to cause a displacement of a mirror which then reflects light to a diflerent spot on a screen ; or the bar, expanding within a lieated tube, may be made to push out a piece of porcelain which can move outwards, but cannot return.

In the laying of railway rails their summer expmsion and winter contraction must be allowed for, by not laying them in contact with one another: Railway distance signal rods have to be tightened up when they are warm, for they lengthen.

In the compensation pendulum the Centre of Gravity of the pendulum is kept at the same distance from the point of suspension, whatever the temperature. The lengthening of an incu pendulum by heat wonld tend to lower it; but by means of brass bars which expand in a contrary direction and with a
 ports is chommons ; for it is the same jull as wonld be required in order to produce a lengthening entual to the contraction which the cooling temels to eanse.

Witlin narrow limits the amount of shortening of lengtl, or longitudinal compression, produced by making a heavy mass rest on the top of a rod, placed vertically, is the same as the amount of lengthening which would be produced by hanging the sane heavy mass upou the rod. Also, such shortening is usually accompanied by lateral dilatation, but not in the case of cork.

When arod is bent there is a combination of longitudinal stretching and longitudinal compression. Suppose a rod to be arranged in a horizontal position, with one end firmly fixed. It may be bent by its own Weight; and it will certainly be bent, to a greater or less extent, if we hang a sufficiently heavy mass on the free end. The upper side of the rod, which is convex upwards, is being stretched and tends to crack ; so that if we take a knife and make transverse scratches in it we may weaken it very much. Glass treated in this way may even be shivered by letting sand drop on its upper surface. The lower sicle, which is concave downwards, is under longitudinal compression : so that scratching the under aspect in the same way, or even cutting notches in it, may do no harm. Between the compressed and the stretched region there is a neutral line, which is bent out of its oniginal form, but is exposed neither to compression nor to extension, and letains its original length.

A glass filament ean be appreetibly bent while a glass rod cannot. Before we aetually put the longitudinally streteled
aspent under a braking stress, the llexure may be ronsinderable in the enseof the filament, but the limit is soon rearhed in that of the foul.

Shear. - When ir solid is sheatert, its prots slip over one another ats the leates of a book naty do when the book is spuce\%ed ont of shater. 1 la ligo.
 121 (11) and (ti) represent the original imid a shewated form of a culical mass of the solid. 'The line Al' has been turned into the direction $A^{\prime} J J$. The angle between $A B$ and $A^{\prime} s^{\prime}$ is the angle of shear: and a Shear is measured by the ratio between the slip or displacement AA^{\prime} and the distance $A B$: that is, the shear is equal to the tangent of the angle ABA^{\prime}.

If we alply twice as great a deforming force, we double the shear' : that is, we do not double the angle ABA^{\prime}, but we double the slip AA^{\prime}, and therewith we donble the tumpent of the angle. Therefore the Tangent of the angle of shew is poportional to the Foree applied: and if we find the value of the tangent of this angle of shear when the shearing force applicd is unity, we reach the value of the "Shearability" of the substance in question.

How should Shearing Force be applied, and how is it to be measured? There is more than one mode of stating this.

One way is to consider the lower plane BC as held fast, and a mniform luessure of so many dynes per su. cmap aplied to the face Λ l; in a direction parallel to the face BC and to the resultant shearing or slipuing motion. If AC be a cubical block of indiarubber, and if the lace AB be pushed in the direction indicated by the arow, while BC is lield fust, the rubber will undercro a Shear and will thus assume the distorted form indicated in Fig. 121 (b) above. The amount of Shear (the tangent of the angle of shear') will in this case be so much per unit of pressmre applied per sq. cm . of the face AB. If now instead of pushing the face $A B$, the finger be lail on the top of the block and be pushed along in the line AD, paralle to the previons direction, again there will be a Shear; and if the Foree so applied be the same ler sti. cm . of the face $A D$, as it had been per sq. cm. of the face AB , the Shear will be the same as before. Or agrain, instead of considering $A \mathrm{D}$ as being pushed along in this way and dragging the substance of the block along with it, we may distribute the
fressure and apply half of it to pmshing the face AD in one direction and the other half to pulling the face BC backwards; an action which can be illnstrated by taking a book in the two hands, and prshing one cover laterally while pulling the other in the opposite direction, so as to canse the book to be sheared out of shape. The total Shear produced by applying pressure to a given block of a shearable sulis in any of these ways is the sime, provided that the total Pressure appled is the same in all.

The force which must be applied in orler to produce a given Angle of Shear is always the same whether the layer be thick or thin : but since tho travel from A to A^{\prime} is greater when the layer is thick, a siven small displacement of A in the direction AB^{\prime} is more casily effected the greater the thickness AB of the layer to be distorted.

Torsion.-The next kind of deformation we have to consiler is Torsion or Twist. Suppose we lave a rod of metal, firmly fixed at one end to a solid support: we want to twist that rocl. If we tried to twist it by operating upon its central or axial line we would fail; we must contrive to apply Force at some distance from that axial line, so as to get leverage or purchase or torque. If, then, we grasp the free end by means of a pair of grippers and prise it round, we find that the farther away from the axis we apply the force, the easier it is to produce a twist; so that our power of twisting depends upon the moment of the Force applied round the axis of the rod twisted. When the rorl has been twisted, the end prised round has been rotated through a certain angle: let us call this angle the Angle of Twist of the rod. Then the angle of twist is found to be proportional to the moment of the force applied ; and it comes to the same thing whether we use a smaller force applied at a greater distance or a greater force applied nearer at hand.

The angle of twist also depends upon some other things. It is dirently proportional to the length of the wire ; it is less the greater the thickness of the wire, and that in the sense that it is inversely proportional to the fourth power of the thickness, so that a wire half the thickness will undergo sixteen times as great an angle of twist, other conditions being equal ;
and it is iliectly propertimal to the shearability of the material of which the wire eonsists.

When we gut down to ohjects as thin as silk fabres, or thonse delicate quarta fibres which l'rofesson Y'ermen lioys has mate ly melting a drop of fuartz and drawing that drof asumber lige neans of liring off an arrow from a bew, their extrone thinness, coupled with the ciremstance that the force neecssary to produce a given rotation is inversely porportional to the fometh power of the thickness, enables forces to be measured which are increclibly small.

If a long slemer har ho hang horizontally, suspendel at its midpoint on a wire or threud or fibre, and if a gentle force lee applied to the ened of the suspended bar, the har will move romul mintil the tendency of the suspending fibre to untwist comes to prevent any fintlet rotation. The filne is itself twisted during this opreration. We observe the Angle of 'lwist: we know from previous experiments on the sane apparatus what angle of twist a given 'lorgue can prodnce ; we know the Distance from the suspending fibre at which the force is applied ; and we easily find, from these data, the amome of the Force now applied. For example, if a torque mement, whose value is 600 dyne-cms., produce an angle of twist cqual to 20°, ant if an unknown small foree, applied at a distance of 12 em . from the suspending fibre, canse a twist of $\mathfrak{2}^{\circ}$, we get the rule-of-three statement that $20^{\circ}: 2^{\circ}:: 600$ dyne-cms. $:(12 \mathrm{~F})$ dyonecms., where F is the valne of the Force we wish to measure. From this we find that $\mathrm{F}=5$ dynes. As might be expected, the delicacy of apparatns constructed on this prineiple makes their use difficult ; but Torsion, with fine filaments, affords ns a most sensitive means of measming small Forces.

In most apparatus of this kind, it is not well to allow the force to cause rotation of the suspended bar if it can be avoided: for the change of position of the point of application of the force may either cause a local variation in its anount, or may alter. the moment of the force by altering the effective leverage (Fig. 29). It is therefore very common to 1 rovide that the snspended bar, though subjeet to the action of the twisting Force, shall retain its original position. This is effected by twisting the upper end of the fibre in an opposite sense by means of a milled hend, graduated so as to show the amount of its rotation. When it has been rotated so as to twist the suspended bar back into its original position against the efforts of the twisting Moment applied to it, it is as if the suspended bar had been fixed and the upper end of the tibre twisted: the amonnt of rotation in the fibre is the same; but it is more accurately measurel, for the original cause of crror is now
climinated. Again, the total rotation in the filme may be divided letween a rotation of the lower and an mposite rotation of the mpere end of the fibre. The whole rotation in the fibee is the arthmetical sum of the two opposite rotitions.

When the twisting force has a monent on "tompre" "qual to 1 dye-cm. (as, for cxamphe, where the foree applied is une dyne at a distance of one enn.), the Angle of 'Twist will be a cestan fraction of a Radian. This fraction is callect the "torsibility" of the wire employed.

When a rod or wire or fibre is twisted with one end fixed, as we go from the rotated to the fixed extremity of it, we find that ench sucecssive section of it is rotated throngh smaller angles, each proportional to the distance from the fixed extremity: Accordingly, if the rod hat urigimally been marked with longitudinal lines or ribs, these lines or ribs would, after the twist, be fond to have assumed a slanting form: and if the twist be such as to carry the free end several times round a circuit of 360, these lines or ribs wouh each present the spiral form of a screw-thread.

We have thus considered tha various elementary deformations which a body may undergo : and we have seen that the Compressibility, the Extensilility, the Shearalility of a substance, the Torsibility of a wire, are the respective Deformations undergone under the influence of unit Forces or a minit Torque as the case may be.

The next 'puestion is, What amount of Force (or of Tor"pue) is repuisite in order to prorluce a given Deformation? Let us take stretching as an example. We have seen that the Elongation is equal to the Extensibility moltiplicel by the Traction: and therefore for a given elongation the necessiry traction is equal to the reguired clongation divided by the extensibility, or multiplied by Extensibility \quad This fraction, $\frac{1}{\text { Extensibility, }}$, is a constant for cach given sulustance, and is known as the "Young's Modulus" of that substance. Hence to stretch any substance so as to impart to it a given proportionate elongation, the necessary Traction is equal to the reeguired Elongation multiplied ly the Toung's Modulus of that substance.
'lhus in steol wire the Extensibility is abont a. 0000000000000 and Youns's Modulus is therefore ahout 2, $100000,000000$. Accordingly, if we want to stretch a 100 cm. wire to a length of $100 \cdot 1$ enn., the required Elongation is 10,1 and then the necessary 'luaction is $10^{1} 06 \times 2,100000,000000$ or 2400,000000 dynes per sf. em. of cross-section ; so that if our wire have 1 sif. 1mm. ($=1$ do sif. enn.) eross-section the necessary Furce is $\because 24,000000$ dynes, or the Weight of about 54 llos.

Neecssurily, the greater the Extensibility the less is: Young's Molulus; and it may be useful to note a few values of this modulus. C'ast steel, tempererl, 2, 470000,000000 ; wrought iron, 1,960000,000000 ; copper, 1,030000,000000; wood, 9800,0000000; leather, 171,000000; fresh bone, 226000,000000; tendon, 16000,000000 ; nerves, 1790,000000 ; living muscle at rest, 93,200000 ; arteries, 5,100000 . Thus it will be seen how much less force is necessary to stretch an artery than to stretch a rod of steel of the same thickness to the same extent.

But we must carry this matter a step farther. Fomg's Modulus in any substance is also known as the Coefficient of Resistance to Extension of that substance. Young's Modulus may be said to measure, for any substance, the property of that substance which is the inverse of its Extensibility, and which may perhaps be called its inextensibility, its unwillingness to stretch.

When a steel wire, for example, is stretehed, it pulls hack. When we hang a heavy mass on a steel wire there is at first a yielding, a certain amonnt of "give," for the wire stretches; but presently there is equilibrium and rest: the heavy suspended mass of eourse tends to sink, for its weight tends to prill it down: but this tendeney is balanced by the upward Pull exerted by the wire which refuses, as it were, to streteh any more unless a greater stretehing Foree be applied to it. Then, the Reaetion or back-pull or Resistance to any farther stretehing is equal to the stretching force whieh that resistauee balanees; and the Resistance per sq. em. of eross-seetional area of the wire is then equal to the Traetion. But the Traetion is equal to the Elongation \times Young's Modulus. Therefore the Resistance, per sq. enn, is equal to Young's Modulus multiplied
by the moportionate Elongation. Young's Modulas thus serves as a means of measuring what this Resistance will be: amb hence it gets the name of tho Cocflicient of Resistance to Extchsion.

Similarly, the fraction $\frac{1}{\text { Compressibility }}$ is called the Resistance to Compression ; and it also goes by the name of the Elasticity of Volume.

Again, the fraction $\frac{1}{\text { Shearability }}$ is called the Rigidity, or the Resistance to Transverse Distortion.

Lastly, the fraction $\frac{1}{\text { Torsibility }}$ is called the Resistance to Torsion of the wire or fibre concerned,

The condition of equilibrium between a Force applied and the Resistance ultimately devcloped in presence of the action of that force is not attainel instantaneously. When we press in a spring, as for example that of a spring-gun, we find that it is very easy to move it during the first part of the movement ; but it is not so easy to send it right home. The Force which we have to exert increases as the arm travels; for the Resistance which it has to encomnter goes on increasing until it attains its maximum value, erfual to the greatest force which we have to exert.

The Tork done in producing a Deformation is always equal to the average resistance overcome into the space through which it is orercome.

Thus the Wrork done in stretching a bar of stcel, $10 \mathrm{sq}, \mathrm{mm}$. ($=\frac{1}{10}$ sq. cm.) in cross-section, from a length of 100 cm . to a length of $100^{\circ} \mathrm{I}$ em. is found as follows : the necessary Traction pel' sq; cm. is the "Elongation" ($\frac{1}{1} \frac{1}{0}=\frac{1}{100}$) multiplied by Young's Modulus $(=2,400000,000000)$, and is therefore cqual to 2400,000000 dynes per sq. cm. But the cross-sectional Area of the rod is not ism. cm., but it sq. cm. ; therefore the nccessary Pull upon the rod is 240,000000 dynes. This is equal to the Resistance ultinately offered by the rod to further extension: but the average resistance is half this. The space through which the Resistance has been overcome is $0^{\prime} 1 \mathrm{~cm}$. Hence the work (=average resistance \times space through whieh it is over-
come) is 120,000000 dyues $\times 0.1 \mathrm{~cm} .-12,000000$ ergs, ne:rly one foot-ponme. 'Ihe same principle applies to the work donc in effecting the other kinds of deformation.

Ehasticity of Kolids

A Solid may offer Resistance to being deformed, but yet, when it is once raformerl, it muy evince no tendency to return to its normal form. A bullet may be moulded under sufficient pressure in a bullet-monld; but once monlded it cloes not tend to spring back to its criginal shape, and it exerts no continuous pressure up,ont the monk. It is not necessary to clamp the bullet-moukt down in order to keep the bullet in shape. Put if a piece of indiarubber be treater in the same way, the pressure on the bullet-mould must le maintained iu order to make the indiarmber maintain its açuired form; and the moment this pressure is relaxed, the rubber pushes the jaws of the mould apart and springs back to its original form. It therefure not only offers Resistance to change of shape, but keeps up that resistance as long as the Deformation endures: ant the resistance so kept up is equal to the Resistance to Deformation. It is so, at any rate, when the deformation is not kept up too long or is not excessive in amount: but we know at the same time that we cannot rely eren on a watchspring retaining its spriminess if we keep it habitually wound up too tight, or if we allow a watch, wound-up but stopped, to lie about for an indefinite period of time. If, however, the pressure which the deformed body persistently kecps up were to remain steadfastly and constintly equal to the Pressure which had caused the deformation, or to the Resistance (that is, to the ultimate resistance) offered to deformation, we would say that the borly is "perfectly elastic." If the pressure so kept up by the deformed body be from the beginning, or if it after some time become, less than the de-
forming pressure, we say that the borly is "imperfectly elastic."

A perfectly elastic sulid, therefore, will perfectly reation its shape when distortent : and in orter to distont it, a certain Force or Pressure or Torpue mast he exerted ; the horly itseld opjoses a certan Resistance to deformation: and once deformed it mast he kept in its acquired form by the continuous application of a force or pressure or torpue, which is continumaly nentralised by the comberforce or counter-pasine or counter-torque exerted by the distorted londy itself.

An irory billiard ball is rery slightly deformed by an impact; and it is very nearly perfectly elastic, for it almost perfectly regains its original shape. The amount of its deformation may be ascertained hy dropping it on a paint-smeared slah: the paint will spread over a certain area of the ball.

On the other hand, an imperfectly elastic body, when subjecterd to a given deformation, does not tend to reverse or undo that deformation completely when left to itself. After being distorted it may, therefore, spring back to something more or less resembling its original form, but always retains a certain amount of the deformation imposed upori it.

There is probably no substance which is absolutely perfect in its Elasticity: all substances tend to renain somewhat distorted after being once put out of shape: but many substances, such as steel or indiarubber, can be bent rery much out of shape and yet tend to spring back so mearly to their original shape that, for all ortinary deformations, we camot distinguish their newly-acpuired shape (alter the cleformalion and elastic restitution of form) from the original slape. Still, there is always a limit to this: if we distort anything too mucll it will fail to regain its original shape. Hence we say that bodies have Limits of Elasticity: and by this we mean that there are, for each object or substance, certain Limits of Distortion within which the Restitution of Form is [ractically if not
absolutely perfect, and beyond which the restitution is markedly and distinctly imperfect.

A strip of steel has wide limits of elasticity: it may be bent upon itself a good deal before it will fail, when let go, to regain its original form: but a strip of lead has very narrow limits of elasticity, for a very slight amount of bending is sufficient to impart to it a permanent deformation. Still, even a strip of lead is not wholly without elasticity: if it be very slightly deformed, it will oseillate and vibrate when let go: and thus the difference even between lead and stecl is a question of degree only.

When the elastieity is perfect, the elastic restitution-1ressure is equal to the resistance to deformation ; and hence Young's Modulus, the Coefficient of liesistance to Compression, and the Coefficient of Rigidity, all serve as means of measuring the Forces exerted by perfectly elastic bodies deformed in the appropriate ways: whenee these terms are often called by one nud the same name, the Coeffieient of Elasticity. This seems, however, somewhat confusing.

Applications of Elasticity. - The property of Elasticity is one which is utilised in a great variety of ways. For example, we may contrast the rough jolting of a cart without springs, or of a railway earriage with springs which are too stiff, with the smooth motion of a carriage poised on good flexible springs. In general, it may be pointed out that an impulse given through an elastic intermediary is not spent in shattering or jolting the body acted upon: and thus, if we tie a string round a heavy mass of iron and pull sharply upon the string, we may snap the string without making the heary mass of iron move; whereas if we arrange an indiarubber band between the string and the mass of metal, and then sharply pull upon the string, we find that first of all the rubber band is stretched, and that then the rubber band tends to eome back to its original length, and the heary mass may be lifted without cansing any detriment to any part of the contrivance put in action. In the same way, if a patient have a limb put under extension by means of a heary mass suspended by a cord passed orer a puller,
and if that limb undergo a muscular twitch consideralle pain may be induced by the jerk; lout if there be a spring between the limb and the snspended mass, the twitch first extends the spring a little against a gradually but continuously increasing Resistauce, and then, when the twitch has ceased, the heny mass is slightly lifted and gently let down again white the spring returns to its normal length, so that the resultant movements are all smooth. How far any such movement, the consequence of a muscular twitch, can be permitted at all, is of course a question for the surgeon in any particular case.

In all kinds of apparatus we find clasticity applied. In bulldog artery forceps the steel is so fitted up that it tends to press the blades firmly together: when the blades have to be separated, the forceps are pressed by the fingers and thumb: lut when the separating pressure is relaxed, the instrument springs back to its original form, and can thus be made to take a firm and tenacious grip of anything-an open artery-laid between its jaws. In scissors, too, there is often a spring to make the blades separate spontaneously as soon as the pressure of the hand is relaxed.

Again, a spring is very frequently used in order to keep loose parts of apparatus in contact with one another. Thus spring-clips are used in order to keep microscopic olject-slides in contact with the stage of the microscope, or to secure them in position when the microscope is tilted back or laid horizontally. In the fine adjustment of a microscope a spring is used in order to prevent there being any play, such as would canse the parts of the mechanism, actuated by the screw, from lagging behind when the fine screw is rotated. The fine screw drives a part of the mechanism against a spring, in which case the part of the mechanism so driven cannot travel faster than the propelling screw : or the screw acts along with the spring, in which case the spring expands and enforces prompt and ready obedience to the movement
of the serew．In buth cases the shatior keppo up a per－ sistent pressure，and the moval）le parts of the apparatus have their relative position rigormsly detemined hy this pressure，so that there is no seope for any irregular phay of movement between them．

The temdency of an indiarubber ball to regain its form when squecem is most useful in many forms of apraratus，as in the indiarubber eaps or lails of pipettes，of fountain pen tubes，of suction mipples，of spray producers．The restitu． tion of form tends to protuce a partial vacum or a defect of air－pressure within the lall：ant it takes place whtil the tendency to elastic restitution phus the partial air－pressure within the ball aro together equal to the externally acting atmospherie pressure．There will not be complete matitution of form unless the internal and external pressures are equal． If such a batl be surrounded by a vacum while the Atmo． spherie Pressurc acts within it，it will teme to dilate aml to fill 12p the vacnum；and this is the normal condition of the lungs themselves，which are dilated by the Atmospheric Pressure no as to fit the cliest walls，though these are normally too large for them．

In spring mattresses cach local sprinct yicleds to a ditierent extent，according to the share of the agrgregate Weight which Palls to its lot to support．A spring mattress with independent springs，therefore，assumes a shape which fits the bolly：but it does not produce an equal intensity of pressure all over，as a water－bed or an air－bed does．

In trusses we see the torsional elasticity of steel aphied； and in the pessary we sce the continums application of pressure by the elastic material persistently tending to regain its original form when distorted．

Even the clasticity of hair has been made use of in some delicate apraratus，for it tends to straiglaten out if bent；and for many purposes a feeble spring made of a bent slip of paper is very useful．

In the arteries there are circular elastic fibres which tend to bring the vessels back to normal diameters when dilated by a cardiac impulse，and which cause the arteries to remain as open tubes when they are cut across．In the crystalline lens of the eye there is elasticity：the lens is kepit thimer and flater by the continuous tension of the suspensory ligament：but when this is more or less relaxed，the lens succeeds，more or less．in regaining a thicker and more convexel form．In the great ligament at the back of the neck the elastio fibres are very
much on tho streteh, and the head is thas sumtained mutust its. normal tenteney to fall forward. 'l'he intervertebral cartil. ages are vely chatio, and tomb to prevent direct shocks homes carred to tho brain; and the ribs and costal cartilages, which undergo hoth thexion and tomion, are also very rastic.

The ligaments of a lamellibranch shell wom fo kerp the shell operi, amb act in the shed as a piece ot indianublem woukd 10 if fitted hetween a domend its lianme, near the hanges: the animal, so long as its sholl is shat, is engred in kerenins it shat, and when it lots gothe shell upens. In the tracheae of insects an mastic spiral kocps air-sumply tubes open, ins a steel pirial does in rubber gas-pipes. In tho trachea and bronchi of man elastic rings surve a similar purpose.

Elasticity may also bo appliel as a means of transmitting energy. In the ordinary case of transmission of power by a long steel shaft, which is set in rotation by a dywheel, and which at its other ind sets the axhe of a machine in lotation against a Resistance, cither directly or through the intervention of belting, the shatt itself is supposen not to twist; lut there is laarlly any case in which it does not twist to some extent: and its tendency to recover its original mutwisted form causes it to orercome the Resistance offered to its rutation, and thus to keep up a rotation which keeps gace with the rotation of the flywheel. The same principle may be applied in an exagherated form, as when the shaft is relucel to a spiral of steel wire. The actual twist of the end remote from the driving wheel may in this case be considerable; but once this twist is sct up, the actual rotation against resistance tends to keep pace with the rotation of the criving wheel. This form of shaft, if such it may be callerl, presents the arlvantase of being flexible; such a spiral spring may be bent to any extent without interfering with its power of transmitting rotation ; and this means of transmitting rotation is utilised in the dooth-drilling apparatus of dentists, as also in a particular form of screw-propeller applied to small boats.

Elasticity plays also at useful part in the transmission
of Encreg loy means of the nee of an clastic intermediary, when the source of energy is itself fluctuating in its character.

A horse pulling a car, for example, is not a miformly acting motor; il gives a tug at each stride. But at each tug it gives the car a certain jerk or jolt; it is itself pulled back by this: and the result is painful. Any one may verify this for himself loy harnessing himself to a heavy haud-cart and pulling it rapidly aeross a rough pavement. If however a spring be interposed between the horse and the ear, at each tuy the horse pulls upon the spring ; the spring then pulls upon the car: the jolts are transformed into a series of gently undulating inereases and diminutions of the pull upon the car, whieh accordingly runs more smoothly. When a car, fitted with a spring in this way, is ruming, the spring can be seen to be continually lengthening and shortening. Professor Marey found that the average full upon the ear was much less when a spring was used as an intermediary than when there was none; and the Energy expended by the animal was 20 per cent less. Elasticity also plays an important part, for similar reasons, in ambulance cars.

Vibrations.-- When an elastic body is deformed and let go, it does not, as a rule, simply return to its original form and come to rest at once. It usually swings past its original form and becomes deformed in an opposite sense or direction.

Let us take a strip of steel and seenre one end of it in a vice : if we pull the free end aside so as to bend the strip, it will tend to carry back the finger: if we relax the pull gently, we find the strip gradually assuming its original form and then stopping: it has then no Energy stored up in it, for it has done as much Work in pulling the hand as the hand had done mpon it, in the first instance, in pulling it out of shape: it therefore comes to Rest. On the other hand, if while it is distorted we suddenly let it go, it springs back, but passes through its original form with great Velocity : at the moment of passing through its original form the Energy which was stored up in it, in virtue of its distortion, as potential Energy, now appears as kinetic Energy ; it goes on until it is distorted so far as to store up that energy as the potential Energy of an opposite distortion.

But it cannot retain the oppositely distorted form: it swings back: it again overshoots the mark: and this
is repeated over amd ovel asth. 'The forco innelling towinds the original or median position or form is alwity proportional to the displacement on listortion: lunee the combitions are those that give rise to Harmonic Motion.

A tuning-fork las its two limbsalturnately aproaching and receling from one another : its vibration is due, in this way, to the elasticity of the steel : and since the conditions are those which give rise to Harmonic Mlotion, the sneecesive vibrations are effected in eypal times, whether they be ample or of small rante.

When a displacement and a corresponding vibration have onee been set up in any part of a solid, in wave is set up which is propagated along or throngh the solid. The rate of proprgation of this wave-motion depends on whether the original distmbance was itself compressional-and-rarefactional or transrease in its character.

A tuning-fork, once set in vibration, gradually dies away in the amplitude of its vibrations. In the first place there is a drain upon its Energy in the production of Sonnd ; it does work upon the air and loses Energy to a corresponding amount. But even in a vacuum the vilrations of a tuming-fork will gradually wane away, its oscillations becoming more and more restricted; the waning away is not so rapid as in air, but still is distinct. The reason of this is that the sulustance of the tuningfork itself oflers Resistance to the oscillation of the fork: and this property goes by the name of the viscosity of the solid. The consequence of this is that at each successive transit through the mean position, a greater and greater proportion of the whole original Energy imparted to the sulustance during the original deformation has become converted into heat, and the oscillations die away : they do not become less frequent, but they become less ample until at length all evidence of them disappears. Steel presents little of this so-called Viseosity: leal presents much of it: whence a tuning-fork made of lead sounds for a very short time, while one made of steel
will continue fo sommt for a much lonerg time. And componsly conomgh, if a tuming-fork of steel be emmpethed to keep up its vilnations for a very long time it may becone very visoms, and may stop at once when the exciting canse is remored: the steel as it were becomes thoronghly tired of vihating: and this phenomenom is known as the fatigue of elasticity.

Therespens to be sone molecular change mudrgone during the oscillations: and this cen be recovered from if the sted be allowed sullicient rest: but if there be not snfficient rest allowerl, the steel becomes visenus of even brittle, and may smap when subjected to vibratory stresses far less than it cond at first have sustaned with impunity. The same kind of thing is sech in rallway axles which are exposed to much vibratory jarming: they may even become erystalline and brittle: and an iron bridge which may stand the passage of a limited number of trains jer day for a long term of yetrs may not be able to recover from the vibratory stresses inducel, at too frequrnt intervals, by too great a number of passing trains, and may thus become brittle and give way.

Strengith of Materials

Strength of materials depends both upon their substance and their form, and also upon the direction in which force is applied. To take the simplest instance, a rod of a substance may have a heary mass suspended upon it ; but if the Weight of the suspended mass exceed a certain limit, the rod will snap. The greater the thickness of the rod, the greater (in direct proportion to the cross-sectional arca) will be the Weight which the rod can stand. For the sake of comparison, however, the standard dimensions of the rod will be one square cm . of crosssectional area; a rod of a given substance one sq. cm. in cross-sectional area will be able to stand a stress equal to the Weight of so many grammes of matter, but can stand no more without snapping: and this number of grammes is, for cach substance, the "breaking weight" of that substance.

 wire, 20, 120010 grammes per sh. cm, : hane, from 1,500000 to 430,000 , will all whertge of sto, 000; temblon, her, 000 ; nerves, 105,$000 ;$ veins, 18,500 ; arturics, 13,$100 ;$ musele, 1500.
 substance, of if l'ressure be by any equivalent means applited to it, it maty le crushed : and the mass whose Weight will hrime about this resuld in a culsical hock, each of whose dimensions is 1 cmu., is the "crushing weight " of the substance cxperimenter on.

Substances may also be broken by trying to bend thenn, or by suljecting then to conditions in which if they lad been flexible they would have bent. Substances which "break rather than bend" are said to be brittle ; sulstances which bend under a transverse force applied to them are saill to be fexible, like the grm chastic used in catheters ; and sulustances which retain their form without bending are rigid.

A short glass rol ean be readily broken by the two hands: a glass fibre of the same length or an extremely long glass rod can readily be bent to a considerable extent ; the short glass rod is not absolutely deroid of flexibility, lut before it could become materially bent, the stretching of one side amt the cormionding compression of the other wonld be consiteralle ; so the rot does not come to bend to any material extent, but smaps. The glass fibre, on the other hand, can be bent through a considerable angle before its oprosite sides or aspects become, to any material extent, elongated or shortened ly the process of hending. As a rule, an olject lloes not break if it is flexible. Contrast a pancake tossed in a pan with a china plate falling on the floor' ; the Forces are similar. If the pancake fall on its edge, it bends as it sinks into its new position: the china plate tonds to bend in the same way, but it cament bend; it snaps.

Let a person fall with outstretched am, but in a state of muscular velaxation, as in a fit or in a state of intoxication, and let us stlppose that the hand reaches the ground lirst: when the fingers tonch the gromid the hand rotates on the wrist so as to come to lic flat on the ground: the forearm rotates at the wrist-joint so as to come to do the same thing: the upper arm rotates freely upon the ellow-joint so as to come to lic flat upon
the forearm: mul hy this time the falline person has sunk ulon the gromm, with his arm limply follednuder him. If, on the other hamd, he falls with a eonscions cllont to save himself, the outstrotched am has its maseles contracted and the joints are fixen, so that the arm as at whote is stifl : it may in this case readily hapen that some of the bones of the limb are snapped across.

Masses which are reantily deformable are thms not rearlily broken; and if they be at the same time elastic, they may be exposed to considerable violence without detriment.

Again, masses may be so built up as to ofter a maximum of resistance to bending or crushing. A rod of metal, for instance, is more easily bent or crusherl than the same ruantity of material disposed in the form of a tube, so long as the walls of that tube are not too thin. Hence we find, as combining lightness with strength, that the stems of plants, the feathers of birds, and the long bones of the body are tubular: and we see in mechanics that this principle is frequently applied, as in the framework of bicycles.

Further, when rigidity is desired, a lamellated or trabecular structure is often of advantage.

We see this in lattice-girder bridges, in which some bars ("stays") are in tension, while others ("struts") are exposed to compression : and bridges so made can span distances which solid bridges could not fetch, for these, even if we could suppose them to lave been built, would collapse through the effeet of their own Weight. In the spongy structure of bones the same thing may be seen. In the upper part of the femur it is necessary that the Weight of the boly should not deform the bonc: and aceordingly we find an arrangement of trabeenlae in which horizontal stays, oblique struts, and vertical stays form a framework, which transmits the weight to the shaft of the bone below, much after the fashion of a "lanterne" lamp-post. In the astragalus we have a comparatively light and porous structure, but the trabeeulie are so arranged as to resist and distribute the Weight of the body and the comnter-pressures from the ground, which are transmitted by those bones, the os calcis and the seaphoid, that abut against the astragalus in the arch of the foot.

CHAPTER V

```
SOLND
```

The phenomena of Sound are due to vibrations of elastic bodies, solid, liquid, or gascons, and to the propagation of compressional-and-rarefactional waves in elastic media; and were it not that we lave special sense-orgms, the ears, for the detection of these vibrations and waves the whole Theory of Sound would form merely a part of ordinary Rinematics or Mechanics. As it is, however, the subject possesses an importance which the study of vibrational motion and wave-propagation, in ordinary thastic materials, might not of itself have possessed.

Let us take an ordinary tuning-fork and set it in vibration in the ordinary way, by striking it on the kinee, or ly drawing a violin-how across it, or by drawing a piece of stick through it hetween the prongs. TVe hear a sound ; and we are able to note that the sound produced is a musical note and not a Noise; that it has a certain definite pitch ; that it has a certain loudness, which in the beginning depends on the force with which the fork is set in vilnation, and which gradually wanes away ; and that the sound is the characteristic sound of a Tuningfork, not of a violin, a flute, a hmman voice, ete. Sounds, as produced, may therefore differ in Purity, in Pitch, in Loudness, and in Character.

If we examine the tuning-fork while it is originating a sound, we find that it is in vibration. This we
maty ascerdain hy applying the pronge to the liph, to the teeth, to the surfue of water, to a prece of glass; or by brimging the funing-fonk into embact with in fith-hall
 or splintes of wool haid across two points of stlppot. The tuming-fork viluates at an elastic mass, is it whole, and not in its molercules. 'I're cflect of the alternate approach ant recession of the fronge foward and from one another, is altermately to puess ufon the sumromming air and to withdsaw from it. The air in the neighbourhood of the furk is thus alternately compressed and rarefied by the movement of the flat surfaces of the prongs. Such alternate compreasions ant rarefactions of the ais, in conserquence of Vibration, result in setting mp waves in the air, which travel outwards from the source of disturbance.

The Waves in the air strike upon a membrane in the ear of the listener, the drum of his ear, his membruna tympani: and this membrane is set in motion ly the waves. This Motion corresponds to the original movements of the tuning-fork; and the motion of the membrane sets certain bony and liquid mechanism within the skull into a corresponding state of movement. This shakes particular nerve-ends, and causes stimulation of these; and the nerves connected will these convey impressions to the brain, which then experiences a particular sensation. Our experience of what we have heard on previous occasions enalles us to identify the particular Sensation experienced, in the present case, as that associated with the sounding of a tuning-fork.

If any part of this chain-the vibrating body, the waves in the air, the movement of the drum of the ear, the movements of the auditory mechanism, the efliciency of the auditory nerveends, the efticiency of the auditory nerve-strands, the efficiency of the brain in response to the stimuli commonicated to itshould happen to break down in any way, or if the comection hetween any two of its links should fail, we would hear no Sound. With the later terms of this series we have nothing to
do in this volume ; but the earlier terms are purely physical in their character.

Air-waves may fail to reach nur ears through there being no air-waves set up, and that for various reasons. First : let as suppose our vibrating or sounding body is supported on wadding in the exhausted bẹll of mo air-pump. There is no air to be alternately compressed and rarefied in the neighbourhood of the tuningfork; and further, the vibrations of the lork are not communicated through the wadding to the baseboard of the air-pump: so no air-waves are produced, and there is 110 Somul heard. Seroml: if the air he only partially exhausted, the effect may still be the same or nearly the same, for it is not easy in that case to set up Waves of compression and rarefaction in the air ; the air prefers to flow back-and-fore romd the fork at each oscillation, surging round the fork, but not having any waves set up in it. Third: even in ordinary air a result quite similar to that of the last case will ensue if the somnding body le too slender.

For example, if a string be stretehed between two points in the open air, say aeross a comer between two brick walls, aml if it be plucked or howed with a violin-low, the sound heard will be extremely faint; the air is not effectively eompressen anl larelied by the vibrating string, but flows or surges round it back-and-fore.

If insteal of rarefied air we have a light gas, such as Hyclrogen, the result will be similar; a feebler sound is produced when the sounding body is made to vibrate in hydrogen than when it vibrates in ordinary air, for the hydrogen has a greater tendency to surge lack-andfore round the fork, and not to matergo effective compression.

If, however, we vary our experiments in the contrary direction, and produce more effective compressions and rarefactions of the air by the vibrating body, we get louder sounds.

If we lave a hell or taning fork sombling in a deceptiach, ant compress the air in that reesptacle, the sonnd will become lomder: a watch seems to tick vory fondly in a submerged diving-bell; the air romm the vibrating boty is denser and more massive, and has correspondingly greater inertia, so that it does not so readily flow away to one side; it is therefore the less able toevade the compression and raredaction imposed upon it. If we suspend onn vilnating string with one end attacherl to the panel of a door, and set it in vibment, the sound produred will he very lond; but it will appear to come from the door, not from the vibrating string. 'The reason is, that the vilurations of the string give the choor-panel a correspondiner series of alteruating pulls and releases; the panel itself vibrates; and its vibrations act upon the air near the surfaee of the panel. That ail eamot move ont of the way in time; aml it is effectively subjeeted to alternating eompressions and rarefactions by the alternating movements of the door. 'The door thus aets as what is ealled a sounding-board to the string: and though the amplitude of its vibrations is small, its action upon the air is very ellieient, so that the Sound prodneed is very loud. The same principle is applied in the sombting-board of the pianoforte, and in the belly of stringed instruments such as the violin : and the experiment may readily be tried, of listening to the sound producel by a tuning-fork suspendel by a string in the air, aud to that produced by the same tuning-fork with its shank pressel against the panel of a door.

In the speaking trumpet, whieh is a conieal tube, the mouth is applied to the smaller aperture, and words are spoken ; the conieal tube prevents lateral flow and reflow at the mouth of the speaker, and makes the resultant air-waves broad-fronted at the broad mouth of the trimpret.

The slower the vibration, the greater is the tendency to lateral flow and reflow; and on the other hand, the more rapid the viluation the less neeessity is there for breadth in a ribrating body. This is illustrated by the ehirping or stridulating organs (two toothed bars and a somnding-hoard) of certain inseets; these, though very small, act so rapidly-some 12,000 eomplete oseillations per second-that they effeetively compress and rarefy the air witlout allowing it time to flow round.

It is not absolutely necessary that the means of propagation of the vibration from the vibrating body to the listening ear should be the intervening Air. The vibrations may be communicated through solids, through
liquids，or through gases other than air．Fach surh medium lats its own Velocity of Propagation of somed－wares，which is the same thing as the Telocity of Propagation of compressional－and－rarefactional Waves in the particular medium．

For instance，in air the velocity is alnont 32200 cm ．or 1089 feet per secomd（at $0^{\circ} \mathrm{O}$ ．），and soumb－wayes take one secomed to travel 33,200 cm．Aceordingly，if we see a lightning flash，and then have to wait say five seconls before we hear the thunder begim，we know that the sonce of somm is live times 33,200 or $166,000 \mathrm{~cm}$ ．away ；a little more than a mile distant．

The velocity in air（and in other ！⿰亻⿱丶⿻工二口冋⿱土寸𧘇es）is unaffected loy variations in the atmospherie pressure：but it is increased by Heat，for it is proprorional to the square root of the Absolute temperature ：and it is greater in damp than in dry air，for dimp air is less lense than dry air．In water the veloeity is greater，being $148,900 \mathrm{~cm}$ ．per second．

In somd－waves，as in all other cases of wave－motion，the law holds gool that $\nu=\mu \lambda$ ，where ν is the velocity of prophation of the wave motion，n is the mmber of vilorations per second （the＂frequency＂），ant λ the length of each wave．Thus in air，$\nu=33200$ cm．per second；if in he 500 per second，what is the wave－length ：Aus．－It is $\lambda=\frac{332000}{600}=66.4 \mathrm{~cm}$ ．

As an example of propagation of sound－waves through Solids，we may take the transmission of somut by the earth，when we lay our ear＇s to it to listen for distant trains，distant marcling，distant firing．

If one end of a long rod of wood be held by one end in the teeth，and if a vibrating tuning－fork be held to the other em， the somed will be distinetly heard ：and the sehoolboy＇s trick of speaking at one end of a long clesk to a listener at the other itlustrates the same transmission of sound－waves by wood．

In auscultation of the chest in medieal work，it is not mofrequently fomed that sonnds produeed within the ehest are condueted to regions at some distance from the points at whieh they originated．

In the ordinary stethoscope soumd is condueter both along the wood and by the air．If a guitar be lain by one elge on the upper enl of the stethoscope，the heart－sounls may often be heard strongly reinforced：for the guitar aets as a sounding． boar＇d．

The Transmission of Ware－motion，which is purely
mechanical in all cases, is ohviously so if we rest the shank of a vibrating tuning-fork against one enct of a long wooden rod and bring the other end of that rout into contact with a door: the Vibuations promarated froms the tuning-fork to the door, along the woorl, canse the doon' to soumd out loully. Sound-waves readily run along metal wires or along stretched threads.

In the ordinary toy telephone, two membranes stretched across rings have their milpoints comectel by a stretched silk thread: when the one nembrane is spoken to, the air-waves set it in vibration, and the vibrations are communicated along the silk threads, with the eonsequence that the other mentrane is made to vibrate in a manner corresponding to that of the first membrane ; then it acts as a sonnding boty, compressing and rarefying the air in the neighbourhood of its opposite face, and the listening Ear hears the original sonnd reproduced. More elaborate apparatus of this kind, in which the parchnent membranes are rephaced by heavier wood dises and the silk threads by wires, will reproduce Sound in this way at great distances.

The actual amplitude of vibration of such dises need not be great; an oseillation through no more than the ten-millionth part of a centimetre is quite sufficient for the production of audible sound, if the ear be hell close to the vibrating object.

In Strebel's stethoscope, its chest-end is closed by a membrane, which carries a little pointer: this pointer touehes the ehest-wall and eompels the membrane to take up vibrations the same as those of the chest-wall. On the other side of the membrane is a closed eavity containing air, and rumning through the body of the stethoscope to the ear-end, where it is terminated by a second membrane. This membrane is set in vibration similar to that of the first, and the observer's ear, placed near it, hear's the chest-sounds.

In Liquids: divers while under water hear the sound of waves beating against the shore ; and on an ice-floe the sound of an approaching storm can be heard by applying the ear to the ice. Waves of Sound can be produced by blowing an organ-pipe under water: the organ-pipe acts under water just as it would in air ; and to the listening ear the surface of the vibrating water acts as a sounding body.

In the open air the waver, muless contined to narrow chamels, are spherical, spoading equally in all directions when the souree of somm is so very small that it is practically a point.

When the upper strata of the uir are conler than the lower, the somed-waves travel more rapidly in the lower strata, and the wave-front is bent upwards and may pass over the head of the listencr, so that he may not be alse to hear the somid. When the mper strata are warmer, the sombd tends in the same Way to descend. When wind blows, the upper strata gencrally move more rapidly, and the wave-front is mate to bear downwards, so that in particular positions to windward tho somm may be very distinctly heard, sometimes at a great elistance.

The proluction of loud sound is associated with great mechanical disturbance of the air: the firing of a cannon may break winlows, throngh the impact of the air-waves produced.

Air-waves are made to do actnal work in Edison's phonomotor; in this instrment a membrane is stretched over a frame ; at its posterior surface it is connecten with a hood hook which rests on the broad margin of a heavy wheel: the margin of this wheel is provided with ronglmesses so shaped that it is easy for the hroad hook to slip over them in one direction, but in one direction only. The membrane is spoken at ; it ribrates: the broad hook slips over some of the roughnesses, and on its return gives them a backward pull ; this process is repeated at cach ribration, and continums somed canses the heary wheel to rotate with cousiderable speed.

Air-wares are reflected by a smooth dense obstacle, according to the ordinary laws of Reflexion of Waves.

Somil can therefore be reflectel by a mirror: and a small bell ringiny round the corner of a house can be rendered andible by a sutticiently large mirror, placed at a proper angle in reference to the sounding bell and to the listening ear. Air-waves can even be reflected, to sone extent, by a stratum or column of air differing in density from the surronding air ; hence sound is partly reflected at the surlace of each of the ascending and descending columns of hotter and cohler air which exist even during apparently clear weather. In foggy or even in rainy weather the air may be more uniform than in clear weather; there is then less of this reflexion, and less dissipation of the sound, so that in such weather sound may actually travel farther. Air-waves may le reflected from the walls or the roof of a
lmikding: and if these be so shapel that the reflected air-waves converge upon some point other than that form whicla the somal-waves starle, alistenser sitmated at that point will be able to heme what is satic. 'This ovenmes mostly whon the rond' is Chipsoidal and vanded, or the walls elliphicat: a sonnd prodnced at the oue focus of the collipse can he distinetly hearl at the other, for the arr-waves are reflected to that point. The rasest fimiliar ease of reflexion ol semmel-wate is the omfinary Echo from a broal elill' or wall. 'The somm-waves, thavelling at 33200 ch. (1089 lece) per second, are reflected; and if a person speak in the presence of a rlifl or wall at the distance of say 1600 chn. (54.45 feot) and at the rate of ten syllables a seeomb, by the time he is begimuing the second syllable the series of refleeter] wave corresponthing to the first syllable begins to reach his car, having travelled 3320 em. (108.9 feet), to the elifl and back, during the tenth part of a second. If the somul be reflectent several times, to-and-fro from elifl to cliff, there may be a Multiple Echo, which reprats a sylfable or sound several times.

When the rellecting surlice is too near to form a distinct echo, the eflect becomes merely a reinforcement of the sound proilnced ; as in the ease of somming-houds behind and above pulpits and orehestras.

Sound can eren be refracted, as for instance by a lamge lens mate of two sheets of collodion cemented at their edges and inflated with carbonic acid. Sucli a lens brings sound-waves, say from a ticking watch, 10 a focus on the other side of it.

If the superposition or interference of air-waves results in Rest, or in conparative quiescence, at any one point, there will at that point be no sound, or but little sound lieard.

If two tning-forls, not exaetly in unison with one another, that is, not vibrating exaetly the same number of times per soeond, be sommed together, as they vibrate they sometimes concur in their direction of motion, and then eome to be more ant more opposed to one another: they thus pass through altermate stages of coneurrence and opposition. The eonsequance is that the listening ear perceives fluctuations in the loudness of the sound produeed. Suppose one of the forks vibrates 513 and the other 511 times a second; the result is as if the ribration were at the rate of 512 per second, with a maximum and a minimum of londness fwice ($=513-511$) every sceond. These fluctuations are called Beats.

If in Fig. ts A and Brepesent two apertmes in the sidn of a praded box, within which a whistle or organ-pipe or hell is cansed to prodme somm, the ear placed sucersaively at α, b, c, ete., proveresalternate somal and silenee; for in these successive positions the wates, from A and B respectively, alternately aid and thwart one another.

Sound-witres in able are generally long enougly to be large in eomprainon with the obstacles they encomnter, ur the apertures through which they pass. When this is the case they prass round comers, and the listening Ear can hear the sommd thourlo the Eye may not be in it pusition to see the sunrce of somml (see Fig. 48). But where the waves are very short, as they are in the case of very high-pitched sommes, the ubstareles they cheounter or the apertures flatogh which they pass may be large in comparison with then ; and in suth cases the Sound may fail to come round comers, and there may be distinct. "sound-shaclows" similar to, lut not as sharp as the Optical Shalows produced if the source of sound were replaced by a source of Light (see Figg 69). In oriter to hear all the somnd produced, the listeners to music ought therefure to be in full view of the orchestra.

Sources of Sound.-In a violin string or a banjo string played in the nsual way, the vibrations are transversal, as may be seen on looking at the string when vibrating: each point of the string ribrates across the line of the string itself. The vibration is of the kind previonsly descrilned as Stationary Vibration (p. 47).

If we assume the string to be perfectly flexible, and to be tightened up' by a pull or 'Iraction of t dynes per sre. cm. of its cross-sectional area, the Frepuency, n oscillations per second, is $n=\sqrt{1 / p} \div 27$, where p is the density of the string and l its length. If wesuppose the stretching Traction to le exerted by, or to be equivalent to, the Weight of in grammes of matter humg on the string, or pulling mpon it over a pulley as in Fig. 122, this equation takes the form $n=\{17 \cdot 67 \sqrt{m / p} \div l d$, where d is the diameter of the string. This formnla enables us to work ont a great variety of prohlems relating to vibrating strings.

If a wire of stecl (lensity $p=7 \cdot 8), 1$ metre $\operatorname{long}(l=100 \mathrm{~cm}$.)
and 1 "2 men. thick $(l=0 \cdot 12$ (•m. $)$ is stretehal by the wejght of 40 kilogrammes ($m=40000$ grammos) iml sel in tmanverse vibration, what will he the frequency of its fimmammatal
 vilhations per second.
'The Number of Triasverse Vibuations per second depends: (I) inomsely on the length of the stretehed string ; (2) inverely on its thickness; (3) directly on the square root of the stretching force applierl; (4) inversely on the spuare ront of the density of the material of the string (or wire). All this can be verifierl with the aid of the Monochord, couplerl with the knowledge otherwise deriver (1).2I4), that the number of vibrations per second, n, is tok us loy the pitch of the Sound produced.

The Monochord is a bos of light woor containings air. Its lower sicle is open, and there are two apertures on each side laterally. Upon this hox rest two

Fig. 122. bridges ("banjo-bridges"), one near each end. Orer the bridges are stretched a couple of wires; both are passed round pegs at the end A ; the other end of the one is connected with a tuning-peg, which may be turned by a pianofortetumer's key ; while the corresponding end of the other is passed over a pulley and made to support a weight. We may use a movable bridge, slipped up and down under citlier wire so as to limit the portion of it which is free to vibrate, and we may thus vary the length, l; we may vary the thickness, l, by fitting up different wires strcessively of the same naterial; we may vary m by altering the load at B; we may vary the density p by fitting the apparatus up with wires of different materials; or we maly vary any or all these terms at the sane time. The formula above given always applies, so that if we know any fom of the terms n, l, l, m, and ρ, we may find the filth by calculation.

In the case of the reeds of a Harmonimm or Concertina, or in
the prongs of a l'ming furk, we have "rods" fixed at one end and freely swiuging their free emds. The liggidity of the material comes rery muth into play; and the gencmat rule is that the Frequency is direetly propertional to the thickness and to the squere roed ol' the Young's Modulus of the material, and incersty proportional to the spumer of the length and to the sinmer mon of the density. From this it follows that if we have two tuning- forks of the same material aml the same shape, hat differing in size, the Frecincucy is incerscly proportional to the linear dimensions, so that a 2 -inch fork will vibrate twice as often in a second as a 4 -inch one.

Tuning-forks may he made to vibrate more rapidly by filing their free ends; more slowly by thimning their prongs near the base. Their speed may also lee regulated by slipping clampers up and down their prongs: the nearer these are to the free emss, the slower is the vibration

Disce of metal, glass, ete., cam be made to vibrate by means of a violin-bow drawn across their edges. If sand and lycoporlium be strewal upon them, the sand collects on certain lines of comprative rest, while the lycoporium is blown by the air-enrrents into places where the vibration is most active: the former are the nodal lines, A, B, ete., Fig. 123 : the latter are the vibrating sectors between the nodal lines. When the ear is held immodiately oror a vibrating sector, say over C, or botter, if a tube be led from near C to the ear, a loud sound will be leard: at A, B, etc., no somm will be heard:

Fig. 123. at O no sound will be heard, for the alternate segments swing in opposite directions and noutralise one another's effect upon the air above 0 , so that this air remains at rest.

In a drum we have a parchment membrane stretched tightly and erpably round a rim. When struck the membrane vibrates as a whole, and its frequency is inversely as its radius or diameter, and directly as the square rout of the tension to which it is exposed. If a Membrane be not equally stretched in all directions, it rould vibrate feelly in the direction in which it is least stretched, and foreibly in the direction in which it is most so. It comes to act like a number of cords laid side by side, and cemented together so as to form a slieet: the sheet as a whole ribrates with the same frequency
as each component eort would have done, under the same tension per mit of transerse-sectional area. This is of importance in relerence to the mechanisn of the Ear.

When a bell vibates we lave two simultanmens modes of vibuation : the bell divides into sectors: these sectors altermately dilate and contract lulially, white con-

Fig. 124. tignous sectors are in opposite phases of vibration, as shown in Fig. 124. At the same time there is an alternating twisting oscillation of the bell: the nodal lines, down the bell at A, B, C, D, are the parts most subject to this twist; :und the parts which dilate and contract most are those at which there is the least twisting movement. In this twist A and C would twist in the same direction round the circle, while B and D twist in the opposite direction.

If we drew one point of a violin-bow along a stretched string, we cause a longitudinal vibration of very ligh frequency: the sound produced is very shrill. The particles oscillate to-and-fro in the line of the length of the string.

The Frequency is $n=\frac{1}{2 l}$. $\sqrt{\frac{\rho}{\rho}}$ where l is the length of the string and φ is the Young's Modulus of the string. For example, if a steel wire ($\boldsymbol{\eta}=2520,000000 \times 981$, and density $\rho=$ $7 \cdot 8)$ of one metre in length ($l=100 \mathrm{em}$.) be set in vibration in this way, the frequeney is $\frac{1}{200} \times \sqrt{\frac{2520,000000 \times 981}{7 \cdot 8}}=2815$ vibrations per second. It will be observed that this frequency does not depend upon the thickness of the string: and henes if the three eatgut strings of a violin be treated in this way they give out sounds of nearly the same piteh.

Glass or metal rods may be made to vibrate longitudinally in the same way: hold them by the centre and rub them lengthwise by a resined eloth; a shrill sound is produced.

If a violin-bow be drawn obliquely aeross a violin string, both transverse and longitudinal vibrations will be set ulp: a shrill squeak will then aecompany the proper tone; whenee the
how shouk always be drawn straight atross the string, withonl any oblisuity.

One somree of sound which is of ronsiderable interest to the physician is the somme of eddies in Jifuids llowing in tulses. Such edties occur where the flow is in any way broken ; and they are most readily heard in wide tubes or with high velocities of flow. They are more wentily formenl when the density on the viscosity of the liyuirl is small; and they maty le fivvoured by irregular constrictions in the tube, or by the inperfect action of valves. In its relation to medical diagnusis the stuly of this sulyject is still incomplete.

Another is the deep-pitehed boom of contracting muscle, which may be heard by means of a stethoscoje phaced over the muscle; or by putting the fingers in the ears and forcibly contracting the jaw-muscles, with the teeth a little distance apart.

Another is the high-pitched sound of stretched heart-valves vibrating mader the inpact of an arrested blook-stream.

Harmonics.-In all the above cases of Tibration of bodies of regular form, we have confined onselves to the simplest form of vibration which a body can present. But there is no case in which this form of vibration is the only one present. In the Tibration of a String, vibrating transversely, the motion will not be exactly the same as that of an ideal string executing one vibration only, and yet it may be practically periodic, that is, may repeat itself at regular intervals. If this be the case, the motion is made up of the fundamental or slowest vibration, together with others whose Frequencies are twice, three times, four times, etc., that of the fundamental or slowest vibration. (Compare Figr. 45.)

Thus the string in the problen on p. 202 will not only have a vibration whose frequeney is $105 \cdot 45$ oseillations per seeond, but will also have others whose frequencies are $210.90,316 \cdot 35$, $4 \cdot 1 \cdot 80$, ete. per seeond.

In a tinkling pianoforte these "hamonic" vilnations, or componemes of the total vibution, are actually more powerfal than the fambamental viluation or component ; in a violin string, moged by a violin-bow, the 2hd, Bri, tht, 5th, and Gith are weak, whike the highes components are ample, and render the somme penctrating; in a banjo or guitar the harmonics are very prominent; in a pianoforte string in gool complition the lower larmonies up, to the (ith are well marked, but those beyomt are absent or fecble. The amplitudes of these hatrmonic components, relative to the funtamental vilmation and to one another, depent uron the mode in which the string is set in motion-chragyed ont to an acute angle by a resined violin-bow and escaping from it when the tension becomes too great, plucked as in the banjo, guitar, harpsichord, knocked by a harder or softer hammer as in the pianoforte-and according to the point at which the Distorting Force is applied. The same considerations apply to all forms of vibration, whether transverse, longitudinal, or twisting, and whether the disturbances proluced be compressional or distorting.

In most cases, however, the Total vibration, thongl approximately the same at each recurrence, is not exactly periodic ; and the Total Vibration is made up of a funclamental vibration, together with others which only approximately correspond to true hamonics. This is what occurs in a string, for instance, by reason of its stiffness, that is, its want of ideally perfect flexibility ; and in such bodies as stifl rods, or discs, or membranes, the higher-freqnency components of the aggregate vibration are far from corresponding to any simple series of true Harmonics.

Forced Vibrations and Resonance.-Suppose we grasped the prongs of a tuning-fork, and pulled them apart, and let them go at regular intervals, the quasioscillations we produced would of course keep time with the Distorting Forces which we applied. This would not be a case of free oscillations of the tuming-fork, but a case of forced oscillations. The principle would be the
same if our distorting force were appled very frepuenty: the result would be a Forced Vibration, which overpowered the natural tendency of the fork to free vibration at its own promrate.

Two clocks on the same tible will keep pace, for the impulses of their renpective tioks, ennveyed along the table, eanse the one to loury on and the other to slow down until the two clocks agree. 'The two prongs of a tuning fork, aven thongh nut exactly efual in size, apmonch and recede from one another simultameonly.

The more nearly the Frequency of the applied intermittent Force agrees with the matmral Perioil of Vibration of the body set in periulic movement, the ampler will be the oscillations protuced.

If the externally arplied Forces be so timed as always to assist and never to thwart the natural ribrations of the body set in ribration, the body may be set in ample Vibration by very small forces.

This may be illustrated by the ringing of a heavy bell with the aid of a bell-rope. The ringer loes not try to pull the hell orer at onee: he gives a gentle tug to the rope, and then lets it go up: a feeble swing of the hell takes place, and the rope takes the bell-ringer's hands up: when the rope next slackens in his hands, he pulls it down tightly : and so for each oecasion on whieh the rope tends to descend. He thus always helps it to descend, and never pulls against a tightening rope; and consequently the lell swings more and more widely, mitil at length it begins to ring. It is kept ringing by keeping up the same process of pulling regularly on a slacliening rope. If the helloringer pulled against a tightening rope he would thwart the bell and elieek its movement.

If there be two tuning-forks of exaetly the same frequeney of matnral or free vibration, and if we set both on the same table, the one of them being in vibration, the other fork will presently vibrate and produce Sound ; the impmlses of the one fork have disturbed the seeond at preeisely the right intervals.

Even across the air of the room this effect will be prollucel: the small push upon the second tuning-fork, produeed by any one compression of the air, is very small: but the eompression is followed by a rarefaetion, which releases the' fork and allows it to swing back; the next compression comes in at the right
time, and the fork is set more windy swinging. From shall hegimanges the vilmation of the secome tanine fork is thus workodnp, a little at a tine, watil at langth it becomes con. siderable.

Gonerally, if any body capable of vibrating at a certain rate be exposed to impulses which recur at that particulan rate, the body will begin to vilnate, and the Encregy of the impulses will be absorbed ly it. This phenomenon is known by the name of Resonance ; and the body which is set in vibration is sad to act as a Resonator.

If a body vibrate in such a way that it presents a Fundamental Vibration and a number of simultanesus Harmonic Vibrations, and if a tuniner-fork corresponding to any of the harmonies be brought near, the tuningfork will give out the tone of the component hamonic to which it corresponds. Such a tuning-fork, acting as a Resonator, will therefore serve as a means of detecting the presence of any particular harmonic vibration as a component in the Total Vibration of a sounding body.

Another form of Resonator serving the same purpose is a globe of glass or brass, of the form indicated in Fig. 125. If a Sound containing, either as a fundamental or

Fis. 125. as a harmonie tone, any tone corresponding to the natural periol of free vibration of the air within the bulb A , be produced in the neighbourhood of the resonator, the listening ear placed at B will hear the air inside A loudly vibrating in unison with that tone; and a set of such resmators will enable the different harmonics of a Compound Vibration to be heard, and their relative intensities to be estimated.

The prineiple of Resonance is applied in many musical instruments, particularly of the wind order. In a reed organpipe a vibrating reed prodnces a particular note; the air in the pipe resounds to it. In the Clarinet, the Oboe, the Bassoon, a reed of eane prodnces mixel vibrations when blown: the air in the pipe responds to one or other of these, according to the Length of the Resonating Colmm as determined by the particular keys pressel down by the player. In the organpipe a mixed set of vibrations is produced by a stream of air blown across the monthpiece, and the air in the pipe resounds
to that wibration which is in misom with its own nathmal jerion of tree vibation. The columa of ar in the pige has to be comsidered as if it were a solid rod of air bemed at one mod and free at the other : but not ynite free. If it were yuite fira at its and the fremaney would be determined by the Jormuka $n=$
 τ the Abohute temperature ; but it is not gnite fien ; the vibrat dims are hampered by the task of lilting the extemal atmosphere at eath nseillation ; and so the vilations are somewhat slower than this. 'The longitndinal movemonts of the air are greatest at the ends of the pipe; at the midpoint the air is mealy at rest, but is altermately spueezed together and relaxed. An organ-pipe blown too hard breaks into a sonnd an Octave above : that is, with twice as many vilnations per secomel.

If the upper culd of an open organ-pipe be stopped, the column of air becomes like a rod clamped at onc end, and the Frenuency becomes half the frequency in the preceding case; that is, the sound prodnced becomes an octave lower.

If we change the gas in the pipe and use say hydrogen insteal of air, the pitelo is altered : with hylrogen the liequency is nearly four times as great: for hylrogen is a lighter gas than air, its density being only 0.07072 times that of air; and then, instead of the number 33200 (the velocity of somnd in air, in $\mathrm{cms}-$. persce.) we would have to use a number expressing thic velocity of sound in liydrogen, namely, $33200 \div \sqrt{07072}=33200 \times 3 \cdot 504$ $=126,290$.

If the Atmospheric Pressure be increased, the pitch is unaffected. If the Temperatme rise, the pitch rises, for the freyucney is directly proportional to the square root of the Absolute Temperaturc.

Thic Flute, the Flageolet, the Fife, and the Piccolo resemble the Organ-pipe in principle. In brass band instruments the lips of the player are made to vibrate; the cavity of the instrmment resounds, according to the size of that cavity, as determined by the construction of the instrument, or by the keys operated by the player, or, in instruments of the trombone class, by slides which lengthen or shorten the resonating cavity.

When a shell is placed near the ear, the wan-an- currcnts in the shell produce a very slight sound, to particnlar components of which the shell acts as a Resonator, so that we then hear the well-known " murmur of the ticle."

The mouth-cavity acts as a Resonator to the sounds produced by the larynx, as in the production of Yowels (p. 216).

Many animals lave special resonance-cavitics, sncli as a dilated hyoid bone, or their cheek-pouches, etc., which enable them to cmit a very loud tone.

The passirge from the "xterior to the drum of the ear is apt to reinfored certain very high-pitched stumds, with disagrecable uflect.

In many stethoscopes the mper fart of the instrment is bell-shapmed, and the bell atets ats a farsonator for a partiontar somm, sometimes there is at the top, a resonatime avity whose size is adjustable, so that it may be male to resomm to sounds of different pitahes.

Many animals use their ears ats reflectors of somm into the ear-passage; and there is in such a case a resonanceredione for particular sounds. The hollowed hand, applicd behind the car, aets in the same way.

When the chest-walls are set in irregular vibration hy being percussed with the finger-tip, or with a rubber-caped hammer, or with a hammer tipped with a hollow rubler cap containing air, there is again a resonance-effect; not in every ease produced by a resonance-cavity containing more or less air, as in the lungs, but sometimes by semi-fluid material, which is selectively set in resonance-vibration in a manner quite analogous to that in which cavities containing air act.

The air in a tube will sometimes resound to a small flame introduced into it. Take a lamp ehimney, and let up into it a minute gas-flame from a blowpipe nozzle : in most cases the tube breaks out into a loud sound when the nozzle has reached a particular height. If it does not readily do so, the action may be started by singing or whistling to the tube a note a little higher in pitch than that corresponding to the natural period of vibration of the air within the tulse. This note may be formd by blowing across the end of the tube; the air in the tube will resound. The air in the tube vibrates forcibly when the. "flame sings"; and the flame is raised and lowered during this vibration, so that its image if looked at in a rotating mirror, instead of being spread out into a plain band of light, appears spread out into a band of light with large teeth ; or, in some instances, it may even be broken up into separate beads of light, as if to show that the flame had been extinguished at each vibration.

This deviee, a Rotating Mirror used along with a gas-flame, is frequently employed in acoustic experiments. A earity is
divided into two parts (Fig. 12'b) by a membranc, such as thin gold-heaters skin. The one mondy of the carity is comectol with a conieal monthpiece A; the other is connected with a supply of coal-gas, which enters at B , and phises ont at C on its way to be bumed at the jet D. This contrivance is callad Koenig's Manometric Cap. sule. When is somul is prombed at the munth of the cone A, sound-waves will impinge directly upon the thin membrane.

Fig.] थri。 These wates will catuse motion of that memHane, which will petty faithfully follow the rariations of pressure due to the somid-waves. The flame will demonstrate this by its variations in height. If the flame he not lookel at directly, but if its image be vicwed in a rapilly rotating polished minror, the inage squeads out into a band of light serrated by large teeth, whose outhe is itself servated by smaller. teeth. The large teeth correspond to the frequency and amplitude of the slowest or fundamental vibration, the smaller to the harmonic vibrations. For rough purposes the experiment may be carried out by prolonging the tube C into a flexible rubiber tube terminated by a rat's tail jet, and swinging the flame in a circle before the eyes. The revolving inirror may then be dispensed with; and it is singnlar to note how the slightest change in the tone of the voice affects the shape of the serrations. It is often possible to find ont by trial how to sing so as to keep the larger serrations open and firee from subsidiary sermations : the tone of voice is then very pure, though it must be confessed it is somewhat hollow in quality. Instead of a cone ure may use a resonator at A; the action of the resonator in response to an appropriate som may then be rendered visible as well as audible.

In the sphygmophone the supply of gras to a singing-flame is controlled by the pulse-beat; an andible effect is produced, keeping time with the pulsations.

The vibrations of the membrane in Fig. 126 follow the peenliarities of the sound-wares in the air: and these follow the preculiarities of the original vibrations of the sounding body. If a writing-point were attached to the membrane, it could make a mark upon a rotating smoked-glass drum; this mark would beastraight line so long as the membrane was at rest, but would present little tremors when a sound was being produced outside the cone A ; and this was accomplished in instruments called phonautographs. In Edison's phonograph an advance was made: the writing-point was made to drive its way more or less deepily into the substance of a strip of tinfoil on a rotat-
ing Irum ; this timbil therafter bore on its surfice a groove "f varying hepth; and if at any time therafter the same writing point were made to travel in the sane erroove by rotation of the tinloil unter it, the whole frocess was reversed. The groove then andated the Writing-point, the writhorpint the Nembrane; the membnane actod nom the Air, sulfertine it to compressions and rarefictions desembline the original; Sommwaves were thas set ap, again rescmbling the orisinal; and Whese, when they reached the listming Var, probumal a sensation of Sound ressmbling the original somad. la the newer forms of the phonograph the groove is not pressed in tinfoil, but is cut ont of a cylinder or dise of wax, and a different proint is used for reprodneing from that which is used for cutting the groove in the wax.

The Vibrations of a Membrane do not perfectly follow the variations of Air-Pressure which give rise to them; and hence the reproduction of sumd by the lhommaph is not entirely faultless. It often happens that the higher components are exaggerated ; and this results in a more or less masal (quality of tone.

The Human Ear.--If we have a series of Resonators of any kind we may analyse any Sound-waves so as to find their Component Vibrations. Each resonator will resound to its own component ; and a sufficiently extensive series of resonators will enable us to trace out all the components. If we can imagine such a series of Resonators, each with its own observer, we would have, in principle, a picture of what, according to Von Helmholta's theory, takes place in the Human Ear. According to this theory, the human ear is, in effect, an enormous battery of some thousands of resonators, each with its appropriate nerve-end which, through the corresponding nerve-fibre, reports the action of the corresponding resonator to the brain. The component Vibrations of the must complex Sound-wares are thus reported separately; and the Brain blends the individual reports into that summary which we call the Sensation of Hearing.

There are serions difficulties, anatomical, experimental, and pathological, in accepting Yon Helmholtz's theory as it stands :
but the student will do well to muterstand that Hewey in the first phace, as a basis for his finther study.
'I'lo arder of events is, atcording to this theory:-
(1) The vibutions of the air are commanicated to a membanme, the drum of the ear. The Amplitude is mueh deerused, ant the Fore corresponlingly inereased.
(2) The vibrations are transuitter from the drum of the can througls a jointed chain of osseons levers, the last arm ol Which moves less than the drmm of the atr itself, with enresponding increase of Foree: and are taken up by a second membrane.
(3) This membrane communieates then to a prantity of liquid in a closed sac, partly boumded by this membrane.
(4) They are transmitted through this litpual to it triangular membrane, the "basilar membrane," stretched transversely and in eontact with liquil on both sides. Of its own accord this membrane could, being lampered by the lisuid, only oscillate mach more slowly than it wonld in free anr: It cuters into vibration by Resonance, not as a whole, but only in localised transverse strips, whose moper rates of vibration correspond to the various components of the mixed vibration commmieated to the membrane as a whole.
(5) Cach localised vibration of the menbrane affeets a local nerve-end apparatus, of whiel there are 16,000 to 20,000 .
(b) Lach nerve-end apparatus is contimuous with a separate nerve-fibre.
(i) The 16,000 to 20,000 fibres converge and form the "auditory nerve," which, by its separate fibres, conveys the seprate local impressions to the brain.
(8) The brain blends these impressions.
What the Ear, taken as a whole, thus perceives is the impact of sound-waves: and as these differ in their Frequencr, their Amplitude and their Complexity, so do the Sounds heard differ in their pitch, their loudness, and their Quality or character.

Pitch.-The greater the Frequency, the higher lhe Pitch.

Take a long strip of iron say 4 feet in length: fix it in a viee: pull it aside and let it go: it will oseillate transversely at a rate such that the oscillations can be eonnted: remove it and refix it so that only 2 feet of it are now free to move: it will now oscillate fonl times as frerpently : 1 foot, 16 times: 6 inches, 6t times as frequently as at first ; and so on. When
the ascilkations beenne sulliciontly ferement, we hear a sound : and :us the free vibrating late of the strip is shortened, the pitch risos.

The l'itch depends on the Frequency of the Fundamental Vibration of a somoling borly : for it is to this alone that our ears are accustomer to listen.

We maty specify the d'iteh of a somme loy stating the Frequency of its fundamental vibation, or else by stating its place in the conventional musical scale. In the Musical scale the starting-point is the a tuming-fork of 435 vibrations per second. Then the corresponling notation, for the scale of pitch representer ly the white keys of a pianoforte, is the following:-

Sounds whose frequencies bear the ratios indicated by the last preceding line form a series which is found to satisfy our ears and to be suitable for the purposes of musical art. It will be noted that $c^{\prime \prime}$ lans iwice as many vibrations per second as c^{\prime}; the interval between them is an octave. Between c^{\prime} and y^{\prime}, or e^{\prime} and b^{\prime}, or f^{\prime} and $c^{\prime \prime}$, the ratio is $2: 3$; and in each of these cases the interval is a fifth. Between c^{\prime} and f^{\prime}, or d^{\prime} and g^{\prime}, or e^{\prime} and c^{\prime}, or ! $!^{\prime}$ and $c^{\prime \prime}$, the ratio is $3: 4$; and in each of these cases the interval is a fourth. Equal intervals between two pairs of musical notes thus indicate equality of ratios between the Fundamental Vibrations of each pair.

The series of notes above given is repeated above and below the particular octave speeified: but the difference between the notes of one octave and those of the similar octave below it is, that the Frequencies of the notes in any octave are twice those of the corresponding notes in the octave immediately below. For example, following up the octave given, we have $c^{\prime \prime}, d^{\prime \prime}, e^{\prime \prime}$, $f^{\prime \prime \prime}, g^{\prime \prime}, t^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}$, with frequencies $522,587 \cdot 25,652 \cdot 5,696,783$,

Si0, 978.75 aml $10+4$ mer secom? : manhers which are twice those pretaining to the oetare wiven above, but which present, the same ratios, and a corresponeling equality in the musical intervals.

The sounds which the Human Eur can perceive range from about 16 to perhaps 40000 fundanental vibrations per secombl: but there is a great difference in this respect between different persons. Cals can hear a whistle which is too ligh-pitched for a man to hear.

The deep-pitched boom of contracting muscle corresponds to ahout 19 or 20 impulses per second.

The Loudness of a Sound tends to be proportional to the energy of the Vibration and therefore to the squere of the amplitude of ribration of the sounding body: but where we have to do with sounds of different pitch we find that the apparent loudness also depends upon the sensitiveness of the ear. And further, in the open air the amount of Energy transmitted to the ear, and therefore the corresponding Loudness of the Somd perceiver, varies inversely as the squere of the distance of the sounding object. If, however, we do not allow the sound-wares to broalen out in the open air, but confine them within tubes, the somed may le carried to a great distance, as along sewers, speaking-tubes, etc., without great loss of loudness ; and if we concentrate the wares-as by hearing trumpets or as in phonograph ear-pieces, or in those stethoscopes in which a conical tube terminates in a narrow tube fitted into the ear, or in two tubes fitted into both ears-we may render sounds distinctly audible which without this it might be difficult to perceive.

Quality, Character, Timbre.-The degree of complexity of a Sound the number of Harmonics present), together with the relative prominence or loudness of each Harmonic, as reported to the brain by the mechanism of the internal ear, is interpreted mentally as giving a distinctive Quality or Timbre or Character to
 saly a' ; wo ean mot only identify the pitch of the note, but we ran say that it is prondmed by a violin, mad hy at
 consciously heall the hamonics, ats a rule; we hear the note $"^{\prime}$, of a certain 'qulity, guite distinernishatjue from the note we protuced ly a lamman voice on by a phanoforte string. When a sumbl is athost free fironn hamonies we have, in the higher motes, it flate-like quality ; mad we have alrearly explained how the vilmations of a violin string difler from thove of a pianoforte string or of a hanjo shimg. If we have at command it number of flutes which produce notes whuse Freaturacies are in the ratios $1: 2: 3: 4: 5$, cte, ant have our appatatus so arranged that we can cause these to summ with loudnesses which we can separately regulate at will, we can build up any quality of Somml; and thus the infonite variety of qualities of solmol which we hear in Nature is very simply explained. Even the different vowel-sounds themselves depend on nothing other than this: a somnd producen by the larynx, and given a particular Character or Quality by resonance on the fart of the mouth-cavity held in a farticular way, is recornised by us, in virtue of that Character or Quality, and of nothing else, as a Towel-sound.

If we shape our mouth as if for a particular vowel, and sound a Jew's harp near the lips, the vowel-somd is heark.

If we listen to a tuning fork in the open air, it secms to say \bar{o}; if we press its shank against a table, it seems to say \bar{o}, for the table emits the octave as well as the fundamental tone, on account of a certain pressure exerted on the table by the fork at the end of each half-oscillation.

The sounds which we hear in Nature vary very much in their complexity. They range from pure Tones, througls tones with Hamonics, and tones, still musical, with harmonic vibrations not well in tune with the fundamental; but they are all more or less regular, with more or less well-defined Pitch.

Noises, on the other hamb, are hat to an momature of somml: whose Frequencies lear no relation to mue another' ; for example, the mixture of sounds which makn up the hame of a down. If somats of a low pitch predominate in the mixture, the general effeet is that of a low-pitched roar or lum ; il sommes of a high piteh, the result is a himh-pitched liss or whistling.

Discord.-Where two musical sombls are simultancously heard which differ hy say 32 vibrations per second, there will be 32 beats per second between the Fundamental T'ones, and this is disagreeable to the ear, as flickering is to the eye. Further, if two notes are simultancously sounded which are too near to one another, the part of the liasilar Mombrane which lies between the regions properly set in vibration is also disturbed, and there is difficulty in identifying the pitch; and this agrain is painful. Two notes may thus prodnce a painful impression when somuled together, and are then said to discord with one another. The harmonics of these notes may also produce disagreeable Beats against one another, and thus give rise to Discord. The combination of notes which produces this effeet to the least extent is the common chord, a Note, its Major Third, its Fifth, and its Octave, with the ratios $1: \frac{4}{3}: \frac{3}{2}: 2$; for in such a combination the Harmonies mostly coincide, and the Differenee and Smmation Tones, of which presently, belong to the chord itself. The Common Chord is therefore the most pleasing or harmonious combination of four notes within the octare.

Difference and Summation Tones.-The drum of the ear mores more readily inwards than outwards; and Ton Helmholtz showed that in any transmitter presenting this peculiarity, when the original someds produced were two, of frequencies n and n ', the somul transmitted eorresponded to four, of frecquencies $n, n^{\prime}, n+n^{\prime}$, and $n-n^{\prime}$. Again, it is asstmed in the elementary theory that the Displacement of the air produced by the two somnds acting together is the sum of the displace. ments produced by them severally; Int this is not quite the ease: this sum is not quite attained: and that is erpivalent to the additiou of a new vibration, whose frefuency is $n-u^{\prime}$. These conclusions are confirmel by experience. Then two sounds of Frequencies say 200 and 300 are sounded together there are heard, faintly, a deej differential tone of 100 $(=300-200)$, and a slitill summational tone of $500(=300$ +200) vibrations fer second. These differential and summa-

Lional tones are thus manly smberetive in thein origrin, and are not due to Beats, with which they maty co-exist.

Thac energy of somnd-waves is doriver from the energy of vibration of the vibmatnorg bodies; the prodmetion of Somm-waves roles these honlies of Enerery, and these vibratime bodies come to rest unles limerory lue continnonsty supplied to them ; and the Encrgy which has been given over to the air or other medimm is ultimately reduced to the form of Heat, while at the same time the air or other medium itself tends as a whole to reassume its original comparatively undisturbed coudition.

CHAPTER YI

HEA1

We have incidentally found, in dealing with the Properties of Matter, that these properties are affected in various ways by the tomperature to which a substance is brought: and thus we have already considered the way in which a change in the temperature of a gas affects its volume (p. 76), that in which a clange in the temperature of a liquid affects its volume (p. 113), its surface-tension (p. 117), the solubility of gases in it (p. 119), its rate of diffusion (p. 121), its osmosis and osmotic pressure (p. 123), its evaporation (p. 127), aud its viscosity (p. 158) ; as also the way in which a change in the temperature of a solid affects its linear dimensions and its volume (pp. 172 and 174); and the effect of temperature upon the $1^{\text {nitch }}$ of Sound produced by the vibration of a gas ($\mathrm{p}, 197$).

We have also, by this time, become familiar with the idea that the Heat of a body is the Energy of Translation, Spin and Vibration of the several Molecules of the boly ; and therefure we may say that Heat is a form of Energy. Let us note, however, before proceeding farther, that the name Heat is also applied to a wave-motion in the Ether, which wave-motion is induced by the Vibrations of the Molecules of a liot body ; and the Energy of this wave-motion is called Radiant Heat. Of this we shall have something to say later. To distinguish the ordinary Heat of a hot body from this

Radiant Heat, it, is sonnetimes callerl Sensible Heat; lut more generally it is simply called Heat.

We become aware of the lleat of a hot body, in the first place, through our cutaneous sense of heat. We fect the same hody, at different times, to le wamer or coller: : and our cutaneons sense of heat (which is guite distinct from that of tonch and is apparently due to a different set of cutancous nerve-ends and nerve-fibres), reveals to ns the premence of a more or less heated condition in the body; for the molecular agitation of a heated body affects the apmopriate nerve-ends in the skin.

A cave or large building, which retains much the same temperature thronghout the year, seems cool in summer and warm in winter.

In the earlice years of seience, it was supposed that Heat was an invisible substance without Weight, called Caloric ; but no one now entertains this idea.

The Energy of Work can lue transformed into Heat. When we rul a lucifer match on its box we do Work: the Energy of this work is converted into Heat; the match-head becomes heaterl, and ignites. When the brake of a vehicle or milway train is put on, the Kinetic Energy of motion, which disapjuears, is iransformed into Heat in the brake. When metal is filed or bored or tumed, Heat is developed at the expense of the work done. When a bullet is stopped by its target, it heeomes hot and may even fuse; the Kinetic Energy of the flying bullet is transformed into Heat. When a liquid is made to flow in pipes, the Energy which is expended in keeping it in motion is ultimately transfurmed into Heat.

Mr. Joule measured the quantity of Heat etolved hy roing Work una a given quantily of water. He expended work to a known extent in chnruing water in a vessel, by means of a paddle rotating in the water; and he found that if he expended 772.55 foot-pounds of work upon 1 lb . of water, he raised the Temperature of the water from 60° to $61^{\circ} \mathrm{F}$. This is as much as to say that

41,593000 crss of Euergy, in the form of ITent, raise the Temperature of one gramme of water througla 1 " ${ }^{\circ}$. subsertumt investigations have shown that this tigure is somewhat too low ; and we shall say that the amount of heat repuicel to mise the temperature of one gramme of water ly 1 C. is 41,750000 ergs.

Heat, being a form of Energy, can be measured in erss (or in foot-pounds) ; and the LTnit of Tleat on the C(.).S. system wonlal be one Erg. But this is not a very conrenient unit, being far too small: and we have to consider five different mits which are in practical current use.
(1) The small calorie (abbreviated to cut: the amount of heat required to raise the temperature of one gramme of water from 0° to $1^{\prime \prime}$ on the Centigrade thermometer : the C(C.S. unit ; 41,750000 ergs, as above.
(2) The large calorie or kilogramme-calorie (Cher or kigroc'a): the amount of Heat rerquiren to raise the temlerature of one kilogramme of water through $1^{\circ} \mathrm{C}$. ; the Continental engineer's unit; 41750,000000 ergs.
(3) The British unit of heat: the amount required to raise the temperature of 1 lb . of water througli $]^{\circ}$ Falrrenheit; 11690,000000 ergs.
(4) The Pound-Centigrade unit: the amount reguired to raise the temperature of 1 lh . of water through 1° Centigrade ; 21042,000000 ergs.
(5) The Joule: 10,000000 ergs; the "Practical Electrouagnetic " unit of heat: the amount of Heat developed during each second in an electric conductor whose resistance is one Ohm, when a current passes in it whose streugth is one Ampere.

Whenever Energy is liberated in a sulustance in a way which does not guide it in any particular direction or make it assume any specialised form, that Energy appears in the form of Heat. Let us, for instance, burn a bit of charcoal ; before combtastion the Charcoal and the Oxygen of the air hat some potential energy of
separation and mutual chemical attraction, and npon combining they lose this. But this P'otential Einergy must assume some other form. If the charcoal be lmoned in the open air, some of the Energy is expenterl in setting up Wiaves in the Ether, as Light aud Radiant Heat. The remander of the Energy liberated is not grided by the enviromment into any specialised form, and appears as Heat, so that the carbonic acid produced by the process of combustion is itself hot.

If, however, we conduct the combustion within a closed opaque vesscl ; if, for cxample, we burn the charcoal within a closed metal vessel filled with oxygen, which we may surround with water ; then we find that there is no Light visible and no direet Racliation of Heat; that is to say, there is no loss

Fig. 127. example, one gramme of pure carbon liberates 8080 co or 337340,000000 ergs. An apparatus of this kind is called a combustion-bomb, or a combustion-calorimeter or measurer of the Heat developed during Combustion.

The combustion-calorimeter just described is a particular example of calorimeters or heat-measurers in general. When we want to know the amount of Heat liberated (as distinguished from the temperature attained), we may surround the source of heat by water and ascertain the rise of temperature in the known quantity of water : and this, at one calorie per gramme of water per degree Centigrade, gives the number of calories of Heat evolved. We shall see afterwards how to allow for the vessel containing the water, which itself takes up some of the Heat evolred.

Theamomnt of Heat libcrated on the Combnstion of 1 gramme of purc carbon, 8080 ca , is the "combustion-equivalent" of pmre carbon. Different substances have different Combnstion-

Equivalents. For example, a gramme of carbonic oxide, on combustion, liberates heat to the amoment of $2-403 \mathrm{ca}$.

This example, of carbon and carbonic oxide, is instructive. Our one gramme of carbon yields 8080 ca of heat on complete combustion to carbonic acid (CO_{2}), whose amonnt is 3_{3}^{2} grammes: the amonnt of carbonic oxide which will yicld the same amonnt of carbonic acid is $2 \frac{1}{3}$ grammes ; these $2 \frac{1}{3}$ grammes will yield on combustion, at 2403 ca per gramme, 5607 ca . The combustion of carbon into carbonic acid may thus be divided into two stages ; first the combustion of carbon into carbonic oxide, which liberates 2473 ct]er gramme of carbon ; and secondly, the combustion of the corresponding carbonic oxide into carbonic acid, which liberates 5607 ca . The tirst stage of the combustion thus liberates a good deal less Linergy than the second : and this is accounted for by the circumstance that in the first stage the carbon is reduced from the Solid to a (iaseous condition, a change of state which absorbs Energy.

If we take a certain volume of mixed hydrogen (2 vols,) and oxygen (1 vol.) and explode the mixture by an electric spark, so that water-vapour $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is produced, we may distinguish three stages in the condensation of the products, each with its own corresponding evolution of Encrgy. First, we may take the stage at which the water-vapour occupies the same volume as the original gaseous mixture; at this stage the temperature is $136^{\circ} 5 \mathrm{C}$., and the Heat liberated is 28580 co per gramme of hydrogen. Second, let the water-vapour cool down to $100^{\circ} \mathrm{C}$. ; it then comes to occupy two-thirds of the original volume, and during this shrinkage more leat is liberated, so that the total Heat liberated is 28738 ce lec gramme of hydrogen burned. Third, let the products condense to lipuid water and cool down to $0^{\circ} \mathrm{C}$. ; then this change of state results in the libcration of still more heat, so that the total Heat liberated is 34462 co per gramme of hydrogen burned.

A gramme of urea when burned liberates 2206 ca ; one of starch 3901 ct ; one of dry albumen 4998 ca ; and one of fat 9096. Hydrocarbons, snch as heavy paraffin oil, have, weight for weight, a higher combustion-equivalent than pure carbon, and still more have they a higher combustion-cquivalent than ordinary coal: so that the leating value of parattin oil, or the amount of water which can be boiled by means of a given amount of it, is greater than that of ordinary eoal.

(THANGE OF STATE

Every change of state or condition is, as a rule, associater with the evolution os the absorption of Heat ; ant it may be neeressary to smply or to take away heat before the Chame of State can occur. Of this there are ntmerous examples.

If a gas be heated, it expauds if it can, lut remains a Gas. If it be cooled down, it shrinks in volume if it can: and when it is below its Critioal Temperature, it will condense into a Liquid if the pressure be sufficient. Liquefaction of a gas is thus associated with loss of Heat, and loss of Heat with a tendency to liquefaction. Conversely, evaporation or volatilisation of a liqnid is associated with absorption of Heat ; and alsorption of IFeat by a licpuid is associated with a tendency to rolatilisation.

If a liquid loc heated it generally evaporates or volatilises muless it is decomposed by the heat ; if it be cooled sufticiently it generally solidifies.

If a solid be cooled, it simply luecomes cold, without change of state ; if it be heated, if it be not decomposed it is liquefied or fused, if the rise of temperature be sufticient. In many cases the Temperature applied, in order to melt or liquefy the solid, must be extremely grent, that of an electric arc for example ; in others the temperature at which Firsion takes place is considerably lower, and in still others we ordinarily see bodies at temperatures above that of their melting or fusing point.

Metallic merenry melts at $-40^{\circ} \mathrm{C}$. : hence we nsually see it melted or liquid, not solid. Platinum, on the other hand, does not melt below $1775^{\circ} \mathrm{C}$. Alumina is infusible in all ordinary furnaces, but can be melted in the electric arc.

In most cases of Fusion by heat, some energy has to be absorbed in order to do the work of tearing the Solid up into a Liquid.

For example, when iee is melted, a considerable anomm of heat (80.025 et per gramme) is absorbed by the ice during the process of melting. This produces no eflect whatsocver upon the Temperature : and thas if we communicate to a gramme of ice at $0^{\circ} \mathrm{C} .80 .025$ ed of Heat, the result is one gramme of water, still at $0{ }^{\circ} \mathrm{C}$. The 80.025 c . of Heat thus seem to have disappeared, and as sensible heat they have disarperared ; and the Energy in the form of Heat, which thus seems to disappear, was called in the days of the material theory of heat, and is still called, the Latent Heat of Water. The 80.025 co have not been destroyed : as Energy they remain, and will he restored as Heat by the water upon its freezing or solidifying into ice. Suppose we have a gramme of watcr at $0^{\circ} \mathrm{C}$, and that we expose it to a still lower temperature, so that it loses Heat to surrounding bodies: as it goes on losing Heat, more and more ol ${ }^{\circ}$ the water assumes the solid form: this goes on until 80.025 ce of Heat-Energy have been lost by the gramme of freezing water ; not until all this Energy has been lost will the whole of the water be converted into iee ; and not until this lias occurred will the Temperature fall in the least degree below $0^{\circ} \mathrm{C}$. Thus the prodnction of ice is not instantaneous, but goes on pari pussu with the loss of the so-ealled Latent Heat by the freezing water.

In an ice-calorimeter, the amount of ice is measured which can be melted by means of Heat evolved within a chamber surrounded by iee : the number of grammes melted, at 80.025 co per gramme, gives the number of ealories of Heat evolved.

How mueh ice will be required to cool 1 litre of water at 15° C. to $5^{\circ} \mathrm{C}$.? One litre $=1000$ grammes ; this quantity of water must be deprived of $1000 \times 10=10,000$ calorics of Heat. Each gramme of iee will take 80.025 co to melt it and 5 cos more to raise it to $5^{\circ} \mathrm{C}$.; or $85^{\circ} 025$ co in all. The number of grammes of iee required is therefore $10,000 \div 85{ }^{\circ} 025$ or $117 \cdot 6$ glammes.

A hot-water bottle contains a eonsiderable number of ealories of Heat, aceording to its size and its temperature ; and thesc ean be liberated at any clesired point. Better than a hotwater bottle is a bottle filled with fused crystalline acetate of soda ($\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}, 3 \mathrm{H}_{2} \mathrm{O}$). When this substance is cool it is solid; but if the bottle or tin ease containing it be immersed in boiling water, the salt first melts and then reaches a temperature of $100^{\circ} \mathrm{C}$. When allowed to cool, it first cools down to $58^{\circ} \cdot 5 \mathrm{C}$. and then remains at that temperature, continuously giving off its latent heat of liquefaction, until the whole of the salt has assumed the solid form. Thereafter it cools down just as an ordinary hot-water bottle would do.

In sumue cathen tha substamer, while mmberoing at change of state (n of courlition, withlinws Encroy from its own molecules, which therenpon becone cooled.

When a Cas is suddenly compressert, IV ork is done lujon it; this work appears as Ileat in the reas, and the gas becomes hot. If' the compuressed gas be allowed to return immediately to its urigimal Pressumand Volume, it recrans its original comparatively cooler' 'Temperature. If, however, it be alluwer, while compuessen, fo cool domm to the temperature of the surrounding air', it will, on leeing allowed to expand, become very cold. While expanding, it does exterior work against the Atmospheric Presstre; and the Enersy requisite to enable the gas to do this exterior work it has obtained by robibing its own molecules of part of their energy, that is, of part of their Ifeat. The gas as a whole therefore becomes colder.

A jet of high-pressure steam, when liberated into the air', suddenly expands; it therenpon becomes colder, and partly eondenses into sealliug clroplets of hot water. A little farther on, by reason of Friction, the jet loses velocity and momentum; its Energy of flow is converted into Heat ; and the droplets evaporate, so that the steam becomes transparent and dry. When the steam is in this eondition, it may even eause evaporation of moisture from any moist surfaee on which it plays. Farther on, it cools down and forms droplets of hot water: it is now again opaque and sealding. It then cools down into the ordinary "eloud of stean" which we see left by a railway loeomotive engine.

Where evaporation of a Liquil takes place without a corresponding amount of Heat being supplien, again the remaining molecules are robbed of part of their Energs, and there is cooling.

As examples of Cooling due to Evaporation we may take the cooling of the skin by perspiration or by a draught of air or by wetting it and allowing it to dry ; a dog conling himself by panting with his tongue exposed: the cooling of water by a porous water-cooler, the water in which prartly oozes to the surface and there evaporates: cooling a room by throwing
water on the floor : cooling of air in coal-pits by howing water-spray into it : cooling of compressel air in religgerator* and compressed-ait mechanism, by the same means; conling of a liquid which is being rapidly evalorated, as in the ammonia process of ice-making, where liquefied ammonia is made do "raporate very lapidly muder an air-pumpl and hecomes extremely cold : and the evaporation of liquid carbonic acid. Which may hecome so cohl that it assumes tho solid form. Liquefled air, when allowed to eqaporate fircely, assumes temperatures below-210 0 .

Chloride of ethyl boils at $35^{\circ} \mathrm{C}$, a temperature lower than that of the berly $(36 \cdot 9 \mathrm{C}$. $)$: hence this liquid will hoil, or at any rate emit raponr raphlly, if a bottle contaning it ho hohd in the hand. If a little bottle of this liquil, with a fine nozzlejet, be inverted and held in the hand, the rapid evaporation forces liquid out throngh the nozzle: the jet of lignid will rapidly cool any surface on whieln it impinges; and if the evaporation be accelerated by directing a blast of air on the same spot as the chloride-of-ethyl jet, complete local anæsthesia, or numbness to sensation, may be set up within a few seconds.

When a liquid has its temperature raised sufficiently to enable it to boil, the process of Boiling is rendered much more regular by putting something with a rough surface into the liquid. Bubbles are then formed at the sharp angles of the substance so employed, say platinum foil: and molecules escape into these bubbles, which thus expand and rise. If this le not done, and particularly if the flask or other vessel be of glass, the whole liduid may become heated to a temperature above that of the vapour formed, and it may give way explosively, forming a trmultuous rush of vapour, while the temperature falls back even below the normal boiling-point; and thus the liquid may "bump" and may even break the flask. At each bump, the momentary fall in temperature is due to the rapid transformation of liquid into vapour.

Where liquefaction of a solid takes place without a corresponding amount of Heat being supplied, the Energy required to do the internal work of pulling the molecules loose is obtained at the expense of the Heat-Energy of the molecules themselves; the liquefied material is accordingly cold.

If we put a quantity of "hyposulphite" of soula into water", the temperature falls very greatly as the salt dissolves. This
is the principle of "freezing mixtures," in which very sohblte salts, such as nitrate of ammonia, are dissolved in cold water ; the mixtmre becomes extremely coll. Solid carbonic acirl, dissotverl in ether ($\mathrm{C}_{4} \mathrm{II}_{10} \mathrm{O}$), falls to a temperature of $-100 \mathrm{f}^{\circ}$ (

Fahnenheit intenderl the \%oro of his themomater to represent the temperabure attaned by a lifuefted mixture of show ams sialt. When the proments are rleared by means of salt in winter weather, the brine which is produerel is at lirst at a temperatine of about $0^{2} \mathrm{~F}$., on "thinty-two degrees of frost": and it therefire chills the feet of perkestrians, while it refuses to dry, becnuse it absorlos moisture. Salt shonk never be uset for any such purpose, exeept in cases where its application is to be immediately followed up by that of the brush to sweep the pavement clean.

If, on the other hand, there be Chemical Combination between the solvent water and the salt dissolved, or a break-up of the molecules of the salt, with evolution of Energy, the Energy thus evolved may suffice, or even more than sultice, to sulply the energy required and absorbed in the proeess of Liquefaction. For example, if carbonate of potash be dissolved in water, the chemical combination between the carbonate and the water, in which hydrates of the salt we pobably formed, results in the liberation of a large amome of Energy; the consequence is that the solution becomes very warm; the cooling due to lifuefaction of the salt is considerably more than overpowered by the heating due to the chemical combination between the carbonate and the water.

When a Gas or Vapon becomes a Liquid, there is generally an evolution of Heat.

When steam at $100^{\circ} \mathrm{C}$. condenses to water at $100^{\circ} \mathrm{C}, 546$ co of Heat are evolved per gramme of steam condensed. This is applied in low-pressure steam-heating of huildings; and in stean-heating in chemical operations, in which the stean is led through a worm or spiral metal tube which traverses the hiquid to be heater. The Heat so liberated is called the latent heat of steam ; and in order to convert a gramme of water at $100^{\circ} \mathrm{C}$. into steam at $100^{\circ} \mathrm{C}$. 536 ce of Heat must be supplied to it.

When rain is formed by the condensation of moisture in the air, the change of state from the vaporous to the liquid condition results in the liberation of Heat, which is lost by the water-vapour and taken up by the surromnding air. The fall of rain thens exercises a mollifying eflect upon the climate.

When a Liquid becomes a Solid, there is generally an evolution of Heat.

For example, if we set aside a strong sohtion of sulphate of soula in hot water, and keep it at perfect rest, it may remain limuil without depositing crystals, thongh it becomes cool; it is thell a supersaturated solution: lout if we chop in at erystal of sulphate of sodu, the whole solution becomes a solid mass of erystals, and at the same time becomes very warm. When water is dropped upon unslakel quicklime, the lime becomes very hot, partly on accomit of the chemical combination between the lime and the water to form hydrate of lime, and partly on account of the water assuming the solid form.

In all eases of evaporation or boiling, the substance whose state is leing changed comes to occupy an increased bulk or voIume. In addition to the Encrgy which has to be supplied in order to effect the change of state, we have therefore to supply Energy in order to do the work of raising the atmosphere. If evaporation take place without Heat being supplied from without, there will be a still further amount of cooling due to this callise.

In change of state from the Solid to the Liquid form, or rice versê, we seldom have occasion to concern ourselves mueh with the Work done by or against Exterior Pressures. But these are not wholly to be neglected ; and one consequence of the action of atmospheric or other exterior pressure is, that the greater the exterior pressure the Iower the melting point of ice, by $\cdot 0074^{\circ} \mathrm{C}$. per atmosphere pressure.

When ice melts it contracts ; when it thus contraets, exterior work is done by the exterior pressure ; and when the exterior pressure is increased, the iee yields more readily into the melted state.

This lowering of the melting point of ie by increased external pressure has some important consequences. If tro pieees of ice, not rery much beiow $0^{\circ} \mathrm{C}$., be pressed together; the ice will melt at the points of eontact; and when the pressure is relieved, the melted ice again freezes and the lumps of ioe cohere. If a block of ice have heavy weights hung upon it by a wire which is passed oyer the block, that wire will cut its way through the block, 保 the iee will close up behind the wire, so that the wire appears to traverse the block without cutting it. When crushed ice is pressed through a narrow
passage, the lumps of ice melt, cohere, are crushen, recohere, and so on, until the whole mass flows, very much as if it were a Yiscons Fluid: a circunstance which has been called in to lielp in explaining the flow of glaciers.

Ice is one of the very few substances in whin the melting point is lowered ly pressurc. In by far the most part of all fusible substances the melting, point is, like the boiling point, raised by pressure, and the liquid formed by fusion is more bulky and lighter than the solid, so that the solid sinks in the melted lipuid.

If we dissolve any solulle substance in a liquid, say sugar in water, the freezing point of the liduid is lowered.

The lowering of the freezing point does not depend on the nature of the substanee dissolved, but only on the number of molecules added to the solvent liquid, and on the nature of the solvent liquid itself. For every one molecule of any substance dissolved in 10,000 molecules of water, the freezing point is lowered $0.0063^{\circ} \mathrm{C}$. Salts when they dissolve in water generally break up more or less completely into ions (p.123), and thus increase the total number of moleeules. Sometimes, on the other hand, there is polymerisation or coalescence of molecules upon solution, so that the freezing-point is not lowered so much as the above rule would indicate.

Sometimes Solids become Gases or Vapours directly, without passing through the Liquid state.

Thus cold high winds will remove snow from the surface of a country without melting it, by a process of true evaporation. Arsenious acid and a few other substanees evaporate in this way when heated ; and their vapour eondenses directly into the erystalline form. Sneh substanees are said to "sublime" unon heating : but the term is also applied to eases such as those of sulphur and benzoie acid, in which the substance heated does melt before evaporating, thongh the vapours are condensed at onee into the solid form without depositiug in the first place as a liquid.

The rate at which a given chemical or physical Change of State or condition is effected is of no consequence whatever in determining the amount of Heat which will be liberated or absorbed.

If we submit starch to direct combustion it will, on complete oxidation, evolve a certain amome of heat, 3900 cot per gramme. If wo expose it to putrefactive processes or to slow oxidation in the boly of an animal, so that it is ultimately oxidised into carbonic anlydride and water in the same ultimate eondition, it will evolve in the long run precisely the same amourt of Iteat, however long a time may be taken in reaching this result. There will be no such high Temperatures attained in the slow process, because the Heat, as it is gradually liberated, is contintiously dissipated by condnetion or madiation ; but if this dissipation of Heat bo checked, relatively high tempratures may be attained, as in the heating, charring, and ignition of masses of damp hay while undergoing too rapid a fermentation. A candle burns away more rapidly in compressed than in ordinary air ; bnt the amount of Heat evolved by it remains precisely the same.

Becf or mutton fat has a heating valne of about 9000 co per gramme, meat free from fat one of about 5200 . The com-bustion-equivalent of the whole diet, less that of the excreted urea, etc., gives the amount of energy which has to be accounted for in the human body: and this Energy is accomnted for as mechanical work done (about 15 per cent of the whole) and heat produced (about 85 per eent). The muscles are the principal thermogenictissues ; and the glands of the body also liberate much heat when in action, throngh the chemical changes going on within them. In the procoss of digestion, heat is absolled during the reduction of solid food to a fluid state, or liberated by the processes of hydratation or dehydratation, or by synthesis of such things as hemoglobin or blood-plasma. In fevers the nitrogenous compounds of the borly are being oxidised, and the evolution of Heat is greater than radiation, evaporation by the lungs and skin, etc. can carry away. On exposure to moderate eold, thic nerrous system stimulates the system to increased activity, and Heat is more rapidly gencrated.

If we have a number of changes of state ur

 condition going on at the same time, we have to make up an account of the evolutions and alssorptions respectively lue to each.The combustion of one gramme of ordinary hydrogen with cicht grammes of ordinary oxygen, to form water at $0^{\circ} \mathrm{C}$, yields 34,462 en of heat ; but the same quantities of nasecnt hydrogen and nascent oxygen yicld 54,623 co. This shows that the true phenomenon is, an absorption of 20,161 ca in breaking up
the hydrogen and oxygen into atoms, amd a simultancous libera. tion of 54,623 on the combination of these atoms to form water: the balance of the account showing a liberation of $34,462 \mathrm{~cm}$

Most chemical compounds give out less Heat when completely burned than their component elements do. For example, acetic acid liberates, upon complete combustion into carljonie acid $\left(\mathrm{CO}_{2}\right)$ and water-vapour, less heat than its carbon and hydrogen would clo when supplied with an adequate amount of oxygen and burned. 'The acetic acid is as it werc already partly oxidised, and complete oxidation will only bring about the liberation of a certain balance or residurm of Potential Energy. Acetylene, on the other hand, gives of more heat when burned than its constituent hydrogen and carbon will do ; carbon and hydrogen cannot be made by any process, direct or indirect, to combine with one another to form acetylene without the simultaneous supply of Energy : and when acetylene is heated to a sufficiently ligh temperature, it decomposes explosively with an extremely bright flash, for it is a substance possessing stored-up or potential energy in virtue of a forced combination. The bright flash which oceurs in acetylene uuder these circumstances seems to be, to a large cxtent, the cause of the Luminosity of Flames. In the formation of bisulphide of carbon, by passing sulphur-vapour over white-hot earbon, a liquid product is obtained. The carbon is liquefied by the chemical combination: the absorption of Heat due to this cause is, on the wholc, greater than the liberation of Heat which is due to the satisfaction of cheunical affinities between the carbon and the sulphur ; and thus, in order to prevent the process of eombination coming to an end, Heat must be continuously supplied. On the other land, carbon-disulphide vapour can be exploded by a fulminate detonator ; and the carbon and sulplur then fall apart, with a bright flash aud the evolution of Heat.

Oil of lemons, turpentinc, and terebenc all have the same percentage composition; but when they are burned, so as to form carbonic anhydride and water, equal weights of them evolve different amounts of Heat. This shows that these three substances possess different amounts of chemical energy, and hence the Potential Energy of the molecules is different, so that the intra-molecular arrangement of the mass must be different.

Temperature

When we add Heat to a body, its Molecules bustle about and spin and twist and vibrate more energetically than
before: the body hecomes hotter; or, as is sairl, its Temperature rises. This increase of Temperature is an effect of the addition of Heat, and it is not to be confounded with the Heat itself, the Energy which is imparted to the molecules of the body.

The Temperature of a body depents arpon the concentration of Heat-Energy in the mass of the body ; that is, upon the nmmber of units of heat per gramme. In different sulistances, it also depends mpon another factor called the specific heat; but in order to defer consideration of this, we confine ourselves in the meantime to masses of the same substance, say iron. If a lump of irou weighing say 10 lbs. be kept in boiling water for some time, it will, on being taken ont, possess a certain amonnt, a certain mmber of mints of Heat; if the sane amonnt of Heat conld by any means be concentrated in a single lb. of iron, that iron wonld be at a very high temperature, for it would be so hot that it wonld fuse and even boil. The quantity of heat world le the same in the 10 lbs and the 1 lb . ; but the temperatures wonld lee widely different.

We might find an analogy if we took two equal quantities of salt, and with the one made a small quantity of very strong brine, while with the other we made a large quantity of very weak salt water' ; the Quantities of salt in both would be the same, but the saltness or salinity of the brine would be greater than that of the weak salt-water. If now we had any instrument for finding the salinity of the brine and of the weak saltwater respectively, we would be in a position, if we pleased, to calculate the quantities of salt in the two solutions resprectively ; but we wonld not be told this by the use of such an instrument alone. The ordinary thermometer is analogous to such an iustrument ; it tells us the temperature, but does not directly tell us the Total Quantity of Heat in the body examined.

One effect of a difference of temperature between two 1,odies is that Heat tends to travel from the body of higher temperature to the body of lower temperature ; and hence the Temperature of a body has been
defined as the relative condition of the body under which Heat tends to travel towards or from it.

Temperature is analogons to Pressure in Fhids; for thess tend to travel or flow from places of higher to places of lower pressure.

Temperature is usually measured by a Thermometer. In this instrument we have a quantity of mercury which occupies known volumes at known temperatures, and the apparatus is so contrived that the volume oceupied by the mercury can always be readily ascertained.

Suppose we have a quantity of melting ice, and a Thermometer immersed in it ; the themometer comes to assume the same temperature as the melting ice, that is, $0^{\circ} \mathrm{C}$. In this state of allairs, the thermometer and the melting ice being at the same temperature, there is equilibrium ; aurl when equilibrium has been reached, the mercury in the thermometer retains the same volume, so long as the melting ice retains the same temperature; that is, so lonis as there remains any ice to be melted. Now put this ice-cold thernometer into warm water: the warm water is cooled, the cold thermometer is warmed; during the warming of the thermometer the mercury in it undergoes continuous expansion ; ultimately both the water and the thermometer come to assume a common temperature, aud then the mercury ceases to expand. The volume which the mercury now occupies is known to correspond to a particular temperature on the scale engraved on the instrument; and thus the Temperature may be measured. But observe that the temperature indicated by the thermometer is not the original temperature of the warn water; it is the common temperature assumed by the warm water and the thermometer. If we used a large thermometer to ascertain the temperature of a small quantity of water, we would fall into error ; for the common temperature attained would be greatly lower than the original temperature of the water: but if we used a very small
thermometer to asectain the temperature of a largo quantity of water, then our error wonld be very sinall ; for the common temperature attained wond in that case differ very slightly from the original temperature of the water: A thermoneter left inside a closed chamber, the walls of which are at a certain temperature, will, if no disturbing canse intervene, assume the temperature of those walls, even though not in contact with them. Heat radiates from the walls, and warms the themoneter:

In all cases a Thermoneter must have some sort of a scale attached, in order to show the numerical value of the Temperature observed. Therefore we have to make ourselves accuainted with three scales employed, the Fahrenheit, the Celsius or Centigrade, and the Absolute Centigrade.

1. In the construction of a Thermometer which is to be graduated according to the Fahrenheit scale, the first essential is a tube of fine uniform bore. The tube should be "calibrated," that is, tested for the uniformity of its bore, by a drop of mercury being made to travel from one part of the tube to another ; this drop should occupy equal lengths at all parts of the tube. At one end of the tube a bulb is blown. This bulb is heated gently, while the open end of the tube is clipped under mercury. The air in the bulb expands, and partly escapes. The flane which heats the loulb is withdrawn ; the heated air in the bulb then cools and contracts, and Atmospheric Pressure drives some mereury up into the tube and bulb. The mercury in the bulb is then heated until it loils, aud the open end of the tube is again dipped under the surface of merenry. When the flame is next withdrawn from the loulb, the loulb becomes nearly filled with mercury. This process is repeated until bulb and tube are completely filled with mercury. The thermometer is then heated to something slightly above the highest temperature to which it is intended to expose the instrument. The tube is fused
ame closed, at a smitable distance from the bull, 'This "purtion in glass-Jowing requires some tkill, and for case in accomplishing it, a fimmel-hem is generally hown on the open ent of the tube, as a preliminary to the series of operations just described. We now have the tube, the lonlb, and the mercury completely filling these. The instrument next cools, and the mereury shimks towards The bulb, leaving a vacuum at the uprer end of the thermometer. Next eomes the graduation of the thermometer, an operation usually deferred for some month-, so as to allow the glass of the bulb to setile down intu its ultimate form. The instrument has its bull, innmersed in the steam from briskly-boiling water; the mercury stands at a certain height in the tulde and, at that height, a mark is made on the tulue. The thermometer then has its bulb immersed in melting ice, and the height at whieh the mereury now stands is similarly marked. If the bulb be too large, the mercury may retraet into the bulb before this temperature is reached; in which case the instrument is unsuitalble for low readings. Next, in order to graduate the instrument, the melting-iee point is marked "Freezing Point," 32 " the steam-point is marked "Boiling Point," 212 ; and the interval between these is mechanically divided into 180 spaces or degrees, equal in length. The division is carried on, above 212° and below 32°, to the top and botom of the tube, the graduation marks being equidistant throughout the scale. The instrument so made is a Fahrenheit Thermometer.
2. In the Centigrade Thermometer the instrument is made in precisely the same way, but the boiling point of water is marked 100° and the freezing point of water is marked O^{\prime}.

On eomparison of these two scales it is not difficult to deduce a rule for translation of any Temperature, given in degrees of the one senle, into degrees of the other seale. For example: what is $98^{\circ} .4$ F.? It is 66.4 Fahrenheit degrees above the
freezing point of water ($32^{\circ} \mathrm{F}_{\mathrm{N}}$): lomb 180 pahr: (herees ate equal to 100 Centigrade degreses : therefore the temperature is $\operatorname{cis}_{1}=1 \times 100=36.55^{\circ}$ Centigrale clegrees above the frousing point of Water : that is, it is $36^{\circ} 85^{\circ} \mathrm{C}$. Again, what is $40^{\circ} \mathrm{C}$. ? Simee 100 Cent. clegrees are equal to 180 Fahr. degrees, $10^{\circ} \mathrm{C}$ is equal to for $\times 180=32$ Frahr, clogrees above frecoing point: that is, Te Fahr. degrees ahove $32^{\prime} \mathrm{F} .$, or, in all, $104^{\prime \prime} \mathrm{K}$. Again, what is $-10^{\prime} \mathrm{k}$.? It is 72 liahr. degrees below $32^{\circ} \mathrm{k}$.: it is therefore $\left(52 \times \frac{100}{4}\right)$ or 10 Centigrade degrees below $0^{\circ} \mathrm{C}$. : that is, it is -10^{\prime} (.*
8. 'The Zero of' houlh these sealos is purely arbitrary: and the question arises, What would be the meaning of it true zero of temperature? If the Temperature of a body were zero, there onglit to be no temperature at all, and therefore no heat-energy in the body. This is an mnattainable state of things ; but it gives an indication as to what Absolute Zero would be.

The Heat present in a perfeet Gas is proportional to the product $p v$, pressure-per-sq.-cm. into volume-per-gramme; but this product is itself, by Boyle's and Charles's Laws, proportional to $(273+t)$, where t is the Centigrade temperature. The Heat present will therefore be mil when $t=-273^{\circ} \mathrm{C}$. ; for then the espression $(273+t)=0$. But when the Heat present is nil, the Temperature will be nil also.

The temperature is a true or absolute Zero at $-273^{\circ} \mathrm{C}$. ; and physicists make considerable use of a scale —tle Absolute Centigrade scale-in which -273 ${ }^{\circ} \mathrm{C}$. is reckoned as Zero, and the freezing point of water is called 273° Abs., while the boiling point of water $\left(100^{\circ}\right.$ C.) is called 373° Alos.

The law that the produet $p v$ varies as $(273+t)^{\circ} \mathrm{C}$, is then simplified, by conversion into the statement that $p e$ varies as τ° Abs., that is, that $p w$ varies as the Absolute Temperature. Further, the Absolute Temperature of a borly and its moleeular Heat-energy are directly proportional to one another; and therefore the mean Velocity of the moleenles of a gas is proportional to the square root of their Absolate Temperature.

$$
\begin{aligned}
x^{\circ} \mathrm{F} & =\left\{(r-32) \times \frac{3}{3}\right\}^{\circ} \mathrm{C} . \\
y^{\circ} \mathrm{C} & =\left(\frac{9}{5} y+32\right)^{\circ} \mathrm{F} .
\end{aligned}
$$

The principal kinds of thermometers which interest us are mercury thermometers, such as lave leen atrealy ileseriberl. Alcohol thermometers are used when very low temperatures are to be registered, for the alcolol does not freeze: glycerine themometers have been used for the same purpose. The advantages of mercury are that it takes but little Heat to bring it to a comparatively high Temperature, that it las a very uniform rate of expansion between $-36^{\circ} \mathrm{C}$. and 100° (!, that it has a low freezing point, and that it can rearlily lue obtained pure. The whole of the mercury in a thermometer ought to be at the same temperature: else the portion in the tube is cooler than that in the bulb, and the instrument gives on the whole too low a reading.

The sensitiveness of thermometers to small differences of temperature is increased by narrowing the tube. Enlarging the hulb would have the same effect; in that case the bulb should be made cylindrical, so that it may more readily enter apertures: but it may, through its size, materially alter the temperature of the object tested, and is then also somewhat slow in its action.

The thread of mercury may be made more easily visible by making the tube of flat elliptical section or flattening one face or aspect of it, and enamelling the tube at the back.

The range of mercury thermometers has recently been raised as high as $550^{\circ} \mathrm{C}$. by the use of hard Jena glass and the employment of nitrogen, instcad of a vacuum, in the upper part of the tube. At that temperatire the internal pressure of the nitrogen and mercury -vapour amounts to as much as 20 atmosphercs ; and this checks eraporation from the mercury. On the other hand, a fusible alloy of potassium and sodium has also been used for high-temperature thermometers.

It is found that the Atmospheric Pressure slowly compresses the bulb of most thermometcrs, so that the mercury comes to stand higher than it should; the "zero rises" in this way continuously but slowly, even for years, and old medical thermometers are sometimes found to be as much as $0^{\circ} .5$ to $0^{\circ} \cdot 7 \mathrm{C}$. in error from this cause: but it does not so rise to any noteworthy extent in thermometers made of the new Jena glass, which bear a distinctive longitudinal red filament of glass. These thermometers are tested against air-thermometers.

Long heating of an ordinary thermometer to $300^{\circ} \mathrm{C}$. may so far soften the bulb that the zero rises to $14^{\circ} \mathrm{C}$. ; that is,
at $0^{\circ} \mathrm{C}$. the instrument stands at $11^{\prime} \mathrm{C}$. Strong heating ol a thermometer for is short time may lower the zero by cansing expunsinn of the bulls, which the instrment may take months to recover from.

In a maximum thermometer, above the mercury is a small bubble of air : ahove this a small thread of merenry. The nir tends to dilate and push up tho thread of merenry, but Iriction keeps this in place. When the temperature rises, the air is sulficiently compressed to loree the thread of undeury up: when it fialls the thread of merenry does not return.

In a minimum thermometer the liquid employed is alcohol, and a litthe broad-headed piece of wire lies loosely in the liguid. As the liquid contracts, smeface-tension pmlls the wire down: as it agaif expants, the liquid flows past the wire: and the end of this nearest to the surface of the liguid indicates the point to which the surface of the liquid had shrunk.

In metastatic thermometers, a little mercury can be withdrawn from the working mercury in the bulb and tube, by being shaken ofl into a cavity at the apex or side. There is then less mercuny in the bulb and tube, and higher temperatures ean be measured with what remains.

For observations of the temperature of the skin it is well to use quiekly-acting thermoneters, kept closely in contact with the skin, and covered, at a little distance from the bulb, with a little cupola of cotton or paper. Breathing on the bulb would disturb the reading; covering the thermoneter ulp with flamel and then leaving it too long a time wonld tend to make the temperatmre assmmed that of the interior, not that of the skin itself.

Specific Heat. - The effect of equal quautities of Heat in raising the Temperature of equal quantities of different substances is not in all cases the same. A kettleful of mercury would much sooner attain a Temperature of $100^{\circ} \mathrm{C}$. when placed on a fire than a kettleful of water will do; less Heat is required in order to heat mercury than to heat water. Tre liave seen that this is one of the advantages attendant ujon the use of mercury, as the liquid in a thermometer. This is expressed by saying that water has a higher Specific Heat than mercury, and mercury a lower specific heat than water. TVe must, however; have some standard of reference; and the standird in use is the specific heat of water, whicll is
taken as unity. That is to say, we take as om measure of Specific Heat the quantity of Heat required to heat 1 gramme of the given substance through $1^{\circ} \mathrm{C}$. ; in the case of water this is 1 calorie; ant so, measuring in calories per gramme, we say the Specific Heat of Wiater is 1. A gramme of mercury is raised throngh 1" U. Dy 0.033 calorie of heat imparted to it ; hence it is said that the sirecific heat of mercury is 0.033 . The specific heat of copper is 0.95 ; that of iron is 0.114 .

Let us suppose that 100 grammes of water at $100^{\circ} \mathrm{C}$. and 100 grammes of mereury at $0^{\circ} \mathrm{C}$. are mixed: what will be the resultant Temperature? If shaken together the water and the mereury must come to the same temperature, the water being cooled and the mercury being heated. Let this temperature be $t^{\circ} \mathrm{C}$. then the mercury has been heatcd through $t^{\circ} \mathrm{C}$., and the water has fallen in temperature through $(100-t)^{\circ} \mathrm{C}$. The quantity of Heat whieh the mercury has gained is (at 0.033 calories per gramme per ${ }^{\circ} \mathrm{C}$.) equal to $0.033 \times 100 \times l^{2}=3.3 t$ calories; that which the water has lost is (at 1 co per grm. per ${ }^{\circ} \mathrm{C}$.) equal to $1 \times 100 \times(100-t)=10000-100 t$. These must be equal to one another, for the heat whieh the one gains is the heat whieh the other has lost ; henee we have the simple equation $3 \cdot 3 t=10000-100 t$; and on applying the ordinary rules to this, we get the answer that $t=96.8$. The common temperature attained is therefore $96^{\circ} \cdot 8 \mathrm{C}$.

Again, if 100 grammes of water at $90^{\circ} \mathrm{C}$. are shaken with a suffieieut quantity of mereury at $10^{\circ} \mathrm{C}$., the eommon temperature may be, say $50^{\circ} \mathrm{C}$. What is the appropriate quantity of mercury? Here we have the mercury raised through $40^{\circ} \mathrm{C}$. ; we do not know the quantity of merenry, but let us call it m grammes; the quantity of Heat taken by the mercury from the water is $0.033 \times 40=1.32 \mathrm{~m}$ ealories. The water, 100 grammes, has fallen throngh $40^{\circ} \mathrm{C}$. ; the quantity of Heat lost by it is 100 $\times 1 \times 40=4000$ ealories; whenee $4000=1 \cdot 32 \mathrm{~m}$, and $m=3030$ grammes. Under the given conditions, then, 3030 grammes of mereury would be raised to a temperature of $50^{\circ} \mathrm{C}$., while the 100 grammes of water would be cooled to $50^{\circ} \mathrm{C}$.

The same ultimate temperature would be attained, with the same cooling of the original hot water, if insteal of using 3030 grammes of mercury at $10^{\circ} \mathrm{C}$, we used 100 grammes of water at $10^{\circ} \mathrm{C} .3030$ grammes of mercury are thus, in problems of this order, equivalent to 100 grammes of water, and 1 gramme of mercury is equivalent to 0.033 gramme of rater.

To find the specific heat of a sulistance, we use proismy similar methols. Let our aim be to lime tho specilie leat of fron. Into 1000 grammes of water at $100^{\circ} \mathrm{C}$. we gat, saty 100 grammes of iton at saly $10^{\circ} \mathrm{C}$. ; the temperature of the water Talls to saly $9211^{\circ} \mathrm{C}$, as ascertained by a thermometer. Then the water, 1000 gramues, has fallen through $7^{\circ} .83 \mathrm{C}$. and the Heat lost hy the water is 783 ealories. The Ileat graned by the iron is 100 grm. $\times 82^{20} 17 \mathrm{C} . \times$ the unk nown pecilic heat σ, that is, ($\$ 21 / \sigma$) calories. Hence $783=\$ 217 \sigma$; and $\sigma=0 \cdot 11$, the specitic leat of iton.

To what temperature would one calorie of INeat raise a gramme of iron ! Ans. $0 \cdot 11.1$ calorie would raise it through $1^{\circ} \mathrm{C}$. ; therefore 1 calorie would raise it through $\mathrm{S}^{\circ} \cdot \mathrm{h}_{\mathrm{C}} \mathrm{C}$.

In a water-calorimeter we must allow fir the vessel containing the water: If this be of copper, whose sp. heat is $0 \cdot 95$, and whose weight is C grammes, while the water itself is W. grammes, the whole calorimeter is equivalent to (W+ 0.95 C grammes of water.

In a mercury-calorimeter mercury is employed because, its specific heat being lower, it is more readily heated than water and thas proviles us with a more delicate means of investigation.

Wheu a gramme of hydrogen is exploded with 8 grammes of oxygen, if there be no expansion, 28,580 ealories of Heat are liberated. The product is 9 grammes of water-vapour. If we assume first that the specific heat of steam, which is 0.37 calories per gramme at ordinary stean-temperatures, remains constant throughout the temperatures reached during the explosion, and secondly that there is no loss of heat to external bodies during the explosion ; then we woukd find that the temperature which we might expect to find developed during the explosion is $28580 \div(0.37 \times 9)=8883^{\circ} \mathrm{C}$, above the original temperature. No such temperatures are observed, for two reasous; first, the specific heat of steam (as well as that of most gases) is not constant, but increases as the temperature rises; and second, the action does not go on beyond a certain temperature (about $3000^{\circ} \mathrm{C}$.) at which the heat would itself eflect decomposition of the steam frodueed: so that the teuperature approaches this limit, but as it is approached, the combination is retarded, and only goes on so fast as will, through getting rid of the surplus Heat by radiation and conduction to surrounding bodies, enable the products to acquire a temperature which shall not exceed this limit. Hence the explosion is more prompt and rapid when the walls of the explosion-vessel are kept cool, so that this surplns Heat is at once withdrawn.

The specilic IIent of water is higher than that of almosi every other substance. There is, however, an exception in the case of hydrogen. 'To heat a gramme of hydrogen through $1^{\circ} \mathrm{C}$. respuires 2.411 calories if the Volume of the gats be kept constimt, and 3409 calories if the gas be allowed to expand under a constant external Pressure while being heaterl.

We have already drawn attention to the fact that Gases are more dillicult to heat, and their Thermal ('apacities are accordingly higher, when they are allowed to expand under a constant extermal Pressure than when they are maintained at constant Tolume, by confining them within a non-expansible vessel. The reason for this is, simply, that when they are allowed to expand they have some external Pressure to overcome, and in avercoming this pressure they do Work; then, in order to enable them to do this work, Heat must be supplied to them, in addition to that which is required for the mere purpose of raising their 'Temperature. (See pp. 83 and 109.)

Thermal Capacity is simply another name for specific heat; but we usually understand that when we use the expression Thermal Capacity we measure the Heat in ergs per gramme, while when we say Specific Heat we measure in calories per gramme, or else content ourselves with a mere numerical comparison or ratio between the Heat required to heat the substance in question, and that required to heat an equal weight of water.

There is a noteworthy relation between the specific heats of different Chemical Elements and their molecular weights: this is, that they are, approximately, inversely proportional to each other.

In theory this ought always to be exactly the case if there were no Energy given mp by a moleeule by reason of the eombination of its eonstituent atoms, and no Energy stored up in a mass by reason of intermoleeular forces; for necording to the Finetie theory of Gases, all molecules should possess the same heat energy when at the same Temperature : in molecule of hydro-
gen the same as a molecule of oxygen, for example; but the number of molecules in a granne of hydrogen is sixteen times as great as the number of molecules in a gramme of oxygen: Whence a gramme of hydrogen wonld require sixteen times as much Heat to lieat it as a gramme of oxyren would, and the Specifie Heat of hydrogen would be sixteen times as great as that of oxygen.

If we take, of any element, a number of grammes numerically equal to its Atomic Weight, for instance $35 \frac{1}{2}$ grammes of chlorine, we have what is callet the "gramme-atom" of that clement; and the general law is that it takes neither monch more nor much less than 6.4 calories to heat one grammeatom of any element through $1^{\circ} \mathrm{C}$. This is otherwise expressed in the form of Dulong and Petit's Law, that the product of the Speeific Heat into the Atomie Weight of an element is always about $6 \cdot 1$; so that the Specifie Heat of an element may be used as one means among others for ascertaining its atomic weight.

The rule is only roughly approximate, however ; the varions elements are, as we usually encounter them, in different plyysical states: in the metals, in sulphur, and in phosphorus the rule is fairly well obeyed; but in carbon, silicon, and boron the specific heat is considerably smaller than we would expect: until we come to high temperatures, at whieh the specific heat rises so that the law eomes to be more nearly obeyed, the proluct being then ahont 5.5 .

In the case of solids, the specific heat is not materially increased, as it is in the ease of Gases, by the necessity of providing Fargy to clo exterior work upon expansion ; but there is some interior work to be done in separating the molecnles, and this requires an extra supply of Heat, known by the nane of the latent heat of expansion. This does not affect the Temperature.

Conduction and Convection of Leat

Conduction of Heat.-When we heat one end of a bar of any material, we mostly find that the bar, in a shorter or longer time, hecomes warmed along its length ; there las beerr a Rise of Temperature in its substance. Different substances differ in the rate at which a given temperature can travel along them; thus a given temperature will travel faster in copper or
in silver than in iton ; an irom spoon will still hatve a cool handle when a copper or silver spoon of the same size dipped in tha same hot lignid may already lee unromfortally hot. The rise of T'emperature at any given point is due to the fact that Heat has travelled through the substance, by commmication of Energy from particle to particle; but it does not follow that a substance in which the Temperature has travelled most rapidly is the one which has conveyed the greatest quantity of Heat from the point at which Heat was applied.

The Temperature at a given point depents not only on the heat-energy per mit of volume, but also on the density and the specific heat of the substance itself: and these may, from substanee to substance, differ in sueh a way as to produce anomalous results. Thus if we cut ont a little dise of bismuth and one of iron, and coat them with wax and pass a hot wire throngh the midpoint of eaeh, the wax will melt on eacls, and the melting will spreal over the wax more rapidly in the disc of bismuth. Therefore a given Temperature travels more rapidly in this metal than it does in iron ; and yet the other metal, iron, is the one whieh ennveys or condncts the Heat-Energy the more rapidly. The higher density and the higher specific heat of the bismuth have, however, disguised this faet, by minimising the Temperature-producing effect of the Heat condueter. Curionsly enongh, even air is a better eonductor of a given Temperature than copper is; though when considered as a medinm for conveying Heat-energy, tranquil air is an exceelingly bad eonduetor.

We have therefore to distinguish between a Flow of Heat and a Flow of Temperature.

Suppose a block of copper, say 10 cm . thick and $10 \mathrm{em} . \times$ 10 em. in each of its faces A and B (Fig. 128) ; and suppose that its two opposed faces A and B form
 the wills of two tanks C and D; while the bloek $A B$ is jacketted by felt, or otherwise, so as to prevent any Heat from escaping outwardly; and let us suppose that the tank C is filled with melting ice, while D is empty, and that the eopper bloek is itself wholly ice-cold. Now fill the tank D with boiling water, and let us keep
that water boiling. The face B of the hook is promptly hented to nearly $100^{\circ} \mathrm{C}$., while the bulk of the block remains at first ice-colll: but Heat travels in the block, and at any wivell point in it the Tempratures go on progressively lising We may make a diagram, Fig. 129, to show the way in which the Temperatme in the block is distributed after successive intervals of time. It takes some time for an appreciahle rise in temperature to reach any given point in the line Als: hat if we stuly any particular point sueh as E , we find that at
 the successive periorls 2, 3, 4,5, its 'I'emperatures are progressively higher and higher, until a point on the straight line AF has been attained. The condition nltimately attained is that the 'Jemperatures in the hock fall away uniformly, so that at a point say lalf-way between B and A it is 50°. The Temperature-Line FA is then a Straight Line and presents a nniform slope ; but until that condition is attained, say when the temperatures in the block are those represented by lines 1 , $2,3,4$, thesc Lines are cnrved; and so long as they are curved there is a flow of temperature as well as a flow of Heat. When the line AF has become straight, the Temperatures settle down and remain the same, so long as the water in the tank D is kept at $100^{\circ} \mathrm{C}$, and the mixture in the tank C remains at $0^{\circ} \mathrm{C}$. Then the line FA has a certain slope, the Temperature-Slope ; and when this temperature-slope has become uniform, Heat is conducted steadily through the copper from the boiling water to the melting ice ; but the flow of Temperature has then ceased. The quantity of ice melted shows how much Heat is travelling. It is found that the quantity of ice melted is such as to show that, across each sq . cm. of the face A or the face B of the copper block, there pass $\left(0.88176 \times 10^{\circ} \div \mathrm{AB}\right)$ or 0.88176 cm . per second ; that is, since the area of these faces is $100 \mathrm{sq} . \mathrm{cm} ., 88.176$ calories per second in all. This number 0.88176 is a number called the Coefficient of Conductivity of Copper ; if the block were of iron the corresponding number wonld he only 0.15123 ; iron allows less Heat to pass than copper does, and is a worse conductor. The general law for a slab acting as a conductor is, Heat conducted (measured in calorics) $=\ddot{\theta} . \mathrm{A} . \delta \tau / \pi$, where θ is the Coefficient of Condnctivity proper to the conducting material, Λ is the cross-sectional Area (in sq. cm.), $\delta \tau$ is the difference of temperatures (in ${ }^{\circ}$ C.) between the opposerl faces or ends, and d, is the distance (in em.) between these. In this expression, $\delta \tau / d$ is the Temperature-Slope.

For ordinary rock the coefficient is only 0.0045 ; and with
 (comesporating to a rise of $1^{\circ} \mathrm{C}$. fro 30 netres of rertical descent), the Flow of lloat from the interior of the earth is, per sq. cun. $0 \cdot 0045 \times 0 \cdot 00033^{\circ}=0.0000015$ calonie per secont, or $17 \cdot 3$ calories per ammm; only enonerh, ber annum, to melt a hayer of ice $0 \cdot 0.4 \mathrm{~cm}$. or about of inch thick. We therefore hepronl now only to an inappreciably sman extent upon the internal heat of the earth for the warmih uecessary to render our globe suitalbe for the mainienance of life on its surface.

During hot weather, the surface of the soil beconnes warmer than the subsoil beneath. The dillerence of temperature canses a flow of heat downwards; hut this flow is so slow that at a considerable depth, say 20 feet, it is nearly the end of the ensuing winter before the influence of the summer's heat is felt: and similarly it is nearly the end of the summer before there appears a fall of temperatme due to the preeeding winter's cold. The fluctuations here alluded to are but small, and rapiclly become smaller at increasing depths. During the winter there may, in keen frost, be a difference of temperatures amounting to say $\frac{1}{2}^{\circ} \mathrm{C}$. per cm. ; and the Flow of Heat from the subsoil, due to the surface variations of temperature, is then very considerable, so that the subsoil becomes cold. Water pipes laid too near the surface may thus become frozen: but if they be laid at a sufficient depth, the whole frosty season may pass over hefore any temperature at all aplroaching the freezing point is attained by them. The earth then acts as a badly conducting felting or blanket, and the water in the pipes is not frozen. In Canada and Russia the water pipes are laid at a deptl of about 1: feet, and frozen water-mains are practically unknown.

If two currents of liquid or gas pass a leat-condueting partition in opposite directions, they may almost completely exchange temperatures : for at every point the current which enters at a low temperature is at a lower temperature than the current which is passing in the opposite direction in its immediate neighbourhood. This principle is applied in the recovery of the Heat of waste industrial products of all kinds, and in regencrative leating of air for buildings.

We have thus seen that substances such as copper, air, and rock, may differ very much in their conductive power or conductivity. A vacuum is perhaps the worst of all conductors of heat; down, hare's fur, sand, ashestos, air, are examples of very bad conductors. Metals, on the other hand, are mostly good conductors.

When a hot borly is surrombed by one or more concentric jackets with layers of air between them, the loss of leat is remarkably diminished. A single layer of linen diminishes the loss of heat from the limman body by abont two-thirds ; a double layer effects a much greater economy of heat. Hence the number of garments is of more importance than their weight: and the heaviness of clothes is an incident to the thick film of comparatively stationary air which lies in their spongy meshes. In order that the wind may not displace this, the cloth has to be thick and therefore heavy. The nse of double windows, in which a stratum of air stands between the two frames, proceeds on the same principle.

It is inpossible to keep the hands in water at $52^{\circ} \mathrm{C}$., while it is quite possible, as observed by Banks, to remain for five minutes in air near the boiling point of water.

A test tube containing coll water may have the upper part made to boil by being held over a flame. The heated portion of the liquid is lightest, and floats at the top. Even if ice were made to lie at the bottom of the tube, it would not melt for a very long time, if at all.

Flanel or cork appears warm when touched by the skin on a cold day, cool on a warm day, because it carrics firom or imparts to the skin less heat than the air had previonsly been doing.

If the wetted finger be laid on a cold iron railing during hard frost, the iron may carry away so much heat that the water freezes and the experimenter is held fast to the railing.

Convection of Heat.-A hot body, in air, cools down, partly by Radiation and partly by setting $n p$ warm air-currents, or convection-currents. The air immediately surrounding the body becomes warmed ; the warmed air expands and becomes lighter ; then heavier colder air flows down and pushes mp the lighter heated air. In its turn it again is heated, and is similarly displaced; and thus a continuous stream of hot air is set up, rising from a lieated body: this hot air soon becomes mixed with the colder air amid which it travels, and the temperature of the whole mass of air thus rapidly becomes uniform. In the atmosphere there are continual convection-currents; and it is these which keep the atmosplere well mixed, and uniform in its composition. Mere Diffusion of Gases would take lundreds of
thonsands of years to restore aniformity of composition in the Atmosplere, once this was effectively disturberl.

Convection-cnrents on a great scale may he secn mulde a large stlmmer cumulus cloud : the massive-looking clome is itsell the where l $_{\text {mat }}$ of an ascending convection-enment, the air in which, when it reaelies a sufficient. height, is expanmed so far as to deposit its moisture in the form of droplets, which we see as a clond. As a role each droplet is formed round a particle of lloating dust. On the still larger scale, convection-èurents are caused over deserts and hot plains by the ascent of heaterl air: cooler air rushes in from elsewhere; and this gives rise to the disturbances in the atmosphere which we know as storms.

On the small scale we may observe convection-currents of air by looking along the top of a hot wall baking in the sun, or by looking over the top of a kiln or furnace or boiler; an ascending column of smoke, or a flame, is an exanple of a convection-current which bears along with it solid pratieles of meonsumed or partly consumed fnel; and in water we may readily study convection-currents by setting some water in a flask or beaker over a lamp, and throwing in a little sardust, which will circulate with the conveetion-currents, descending with the colder water and ascending with the hotter. Con. veetion-currents of air or of water are utilised in Ventilation and in Warming.

Cooling Surface.-TThe loss of heat ly radiation and convection, in free air, depends on the effective Cooling Surface.

In many stoves we see radiating sheets of metal attached, which increase the Cooling Surface of the stove, and thereby increase the warming action of the stove unon the air, both by radiation and by setting up currents in the air. In warm weather there is a natural tendency to lie at furl length, and thereby to increase the cooling surface of the body: in winter the matural tendency is to roll the body up into small compass. The loss of Heat by the human body depends upon the conductivity of the skin; and the flow of heat outwards is practically greatly reduced by a layer of fatty tissue. In some cases the skin may be warmed, or a continuously abnormal supply of Heat may be brought to it from the internal paris of the body, by increasing the circulation of blood in the skin, as for example during exercise or when alcohol is used in cold weather: the skin feels warm because the blood-vessels of the stin are
fuller than they usually are, and the sensation of wamth is really an indication that the Heat of the body is not being conserved, hat is being lost by muliation, eonvection, conduction, and erapmation at the surface. Such loss of leat may do mo harm if the person be well fed, so that there is a continnous supply of Heat-energy from the oxidation of the lissnes; but in ill-nonrished subjects, on with long exposures to cold, excessive loss of heat from the skin may move disastrous.
Λ smaller animal has to froduce more heat, pre gramme of its substance, than a large one: for it has, proportionally to its bulk, a larger surface-area.

Let us return to Fig. 128, ind instead of surounding the block AB with folting so as to prevent the lateral escape of heat, let us leave its sides exposed to the air. We may snppose this air to be ice-cold, and we may at the same time lengthen our block into a bar or lod or wire, as in Fig. 130. Heat travels along the bar, but is lost in two ways; first by radiation, so that the land or a thermometer brought near it may be warmed; and secondly by the bar prodne-

Fig. 130. ing convection-currents in the surounding air. There is, as before, a Flow of Temperiture along the bar until a eondition of equilibrium is attained: but the Temperatnres, when equilibrim is attainet, are not such as to present a uniform slope FA as in Fig. 129.

Fig. 131. The line represcnting the temperatures at the diflerent points of the bar presents, on the otler hand, a form such as that shown in Fig. 131. Near the somree of heat the wire is warm, but as we move away from it we find the temperatures rapidly fall off, ontil, at length, we find that the wire is scareely licated at all: for the lieat whieh might have gone to warm the wire at any given point has, for the most part, been lost on the way thither: Thus an iron wire 6 feet long may be heated at one end so far as to melt it, while at the other end its temperature is not raised by as much as $1^{\circ} \mathrm{C}$. We may burn the most volatile oil in a lanp with a metal wick tube if that wiek tube be sufficiently long, for the lleat eseapes on its way down the tube from the flame, and the Tcmperature of the lower chd of the wiek-tube does not rise to any material extent.

A wire leated at one end will not become as warm, at its other end, as a thick rod of the same lengtli would beeome, for the wire has proportionally more surface exposed. If we want to obtain a given lise of tenperature in any part of a piece of apparatus, and find that we ean clo what is required by
means of a rod of metal say 20 incles long，of which one mind is in hoiling water，and whose thickness is 子 inch，we can produre the same Tomperature（with a slower flow of 1teat－energy）by means of a wire of the same metal say forch in diancter but whose leugth is redneed to 10 inches ：for the law is that in hiars of difterent thicknesses，the distances from the loeaterl extremity at whieh the same temperatures can be kept up by heating the extremity of the lars to the same temperature are to one another as the squetre roul of the thicknesses，

Thanseormation of Heat into TVork

When Heat is transformed into Work in a steam engine，the movement of the piston is che to the bombardment of its steamward face by the Molecules of the steam．The piston has，at the end of its stroke， to be put baek in order to make another stroke；and there is a limit to the proportion of the Heat available whieh ean be converted into work by any meehanism of this kind．In a partieular kind of imaginary engine called Carnot＇s engine，whieh is an ideal not even approximated to by any engine in existenee，the proportion of Heat which could be converted into Tork is $\frac{\tau_{1}-\gamma_{0}}{\tau_{1}}$ of the whole，where τ_{1} is the temperature of the working gas or vapour，and τ_{0} is the temperature to which that gas falls during expansion while doing work，all in degrees on the Absolute seale．

Thus if the working substance became iee－cold ou expansion， the temperature τ_{0} would be $273^{\circ} \mathrm{Abs}$ ；if the working substanee were high－pressure steam at $120^{\circ} \mathrm{C}$ ，τ_{1} would be $393^{\circ} \mathrm{Abs}$ ，：and the utmost proportion of the Heat－energy of the ligh－pressure steam which eould be transformed into Work is $\frac{3935-273}{3 y^{3}}=$ $\frac{120}{3 y ⿱ 丶 ⿸ ⿰ 𠄌 ⿻ コ 一 ⿱ 丿 丶 刀 ⿴ 囗 十 ~}=30.5$ per cent of the whole．In actual steam－engines the proportion transformed into work is mueh less than this．In a gas－engine the hot expanding gas is heated by internal com－ bnstion during the explosion，and the temperature τ_{1} is much higher（some $1000^{\circ} \mathrm{C}$ ．）than ean be applied to steam ；so that the ratio above mentioned is larger，and the efficieney of a gas－ engine may be greater than that of a steam－engine．On the other hand，the expansion of Steam is associated with condensation，
and this with liberation of energy during the liquefaction, so that the temperature does mot fall as rapidly during the expansion as it would do in a gans : and accortingly, expanding stemn does more Work than an expanding gats would do.

The statement of the above Ratio is known as the Second * Law of Thermodynamics. The Second Law of Themodymmics also takes the form, which is really another way of presenting the sanc fact, that Teat camnot of itself pass from a coller to a hotter bolly, nor can it le made so to pass by any inanimate material nechanisn ; and that no mechanism can lee driven by any simple and simply reversible cooling of any material object helow the temperature of surrounding objects. Whether this law applies, or ought to be expected to apply, to animate material mechanism is not yet clear. About fifteen per cent of the total energy of the food consumed is capable of heing utilised as Work ; and this is a proportion much greater than corresponds to any apparent differences of temperature within the human body, if the boly be considered as a heat-transforming Engine. It has been suggested that such differences of temperature as may account, in compliance with the law stated, for the great mechanical efficiency of the boly considered as an engine may, after all, exist hetween the microscopic elcments of the tissues: and evidence has lately been adduced to show that this is so. But the Energy which is expended by the hody in doing Work seems to be drawn directly from the Chemical Energy of the muscles; and the work is not done by the transformation of Heat-energy, as in a steam-engine. If the muscles have no work to do, the Energy liberated during the chemical changes within them, having no specialised form to assume, takes that of Heat as in ordinary chemical processes, and is dissipated; but if they have work to do, the Energy corresponding to the work done may not take the form of Heat.

[^0]
CHAPTER VII

ETHER-TVAVES

We have seen that when an object vibrates on masse, it may produce Waves of Compression and Rarefaction in the air. We have now to consider waves in the Ether. These waves are produced either ly the Vibration of Molecules, which is their ortinary source, or by electric methods which will be mentioned later on. These waves in the Ether are not wares of compression and rarefaction, but correspond to transverse deformations or displacements of the Ether, always at right angles to the direction in which the Wave is travelling. In this part of this book we shall confine ourselves to those Ether-waves which are due to the Vibration of Molecules.

We must in the meantime reserve opinion as to the nature of the radiations discovered by Professor Röntgen, which will be referred to later on.

Whatever increases the aggregate kinetic energy of Molecules, increases in the same proportion the Energy of vibration of each molecule; and in some way which is not yet fully understood, the vibrating molecules pull the surrounding Ether about, and set that Ether in vibration. They do not simply dilate and contract, but they distort the Ether as they vilurate, and the Waves produced in the Ether are waves of Transverse Distortion. The greater the amount of Energy possessed yy the molecules, the more energetically and also the more
irregularly and rapidly will they vibrate; and honce, while the molecules of a comparatively cool body will giverise only to waves of compratively small Frequencies, those of it very hot boty will give rise to a mixture of waves of many frequencies, up to the most rapid known. All these wares are propagated through the Ether with the same Velocity, about 30057,400000 cmi., or 186000 miles, per second. The waves produced ly the vibration of molecules range in Frequency from absut $20,000000,000000$ to about $40000,000000,000000$ oscillations per second: and the Wave-Length ($=$ velocity of propayation \div frequency) in Ether, that is in a racuum, accordingly varies from about $\frac{1,30}{} \frac{1}{3000} \mathbf{~ c m . ~} 10$ about ${ }_{6} \frac{3}{\square} \mathrm{~cm}$. The waves are therefore very small : and their presence is a matter of inference from the phenomena to which they give rise, especially the phenomena of Light.

The Ether-waves, as they travel through the Ether, are all alike in every respect except that ol Size : and in that respect they may differ in (1) wave-length and in (2) the amplitude of vibration.

Waves differing in Wave-length differ in the kind of effect which they produce when they impinge upon a solid body. Within a larticular limited range of Frequency-392,000000,000000 to $757,000000,000000$ per second-if they fall upon the eye they produce a sensation of Light. Of these, the slowest-the waves with the least Frequency and the greatest Ware-lengthproduce a seusation of red light; as the frequency increases the sensation produced by them is successively that of what we call orange-red, orange, orange-yellow, yellow, yellow-green, green, greenish-blue, blue, blueviolet, and violet light. Wares of greater frequency than those which produce a sensation of violet do not produce any sensation in the eye at all ; but they do affect a photographic plate; they induce chemical action and are called Ultra-Violet or Actinic waves.

Note, howerer, that there is no fixed line of demarcation between light-producing and actinic waves; the lormer may also give rise to chemient reactions ; lut their effect is not, with the majority of substances "decomposable ly light," as great as that of the shorter ultraviolet waves. Ether-waves too slow to be visille are ealled infra-red waves; and they are very eflective in heating a body upon which they fall ; their Energy is taken up by the molecules of the body upon which they impinge, and the body becomes hot. Note again, however, that there is no line of demarcation lectween the infra-red waves and the other kinds mentioned: for light-producing or lmminigenous waves can heat a body upon which they fall, and even the infia-red waves can effect chemical decomposition in praticular chemical substances, so that for example, Major Abney has suceeeded in making a photograph of a hot kettle by means of specially prepared photographic plates, exposed to the invisible infra-red waves radiating from the kettle. As it happens, however, the Energy of the longer waves, as we find them in sunlight, enormously exceeds that of the luminigenous waves, and they are therefore more powerful in their leating effect; and they are distinetively called Dark Heat-Waves.

These kinds of waves may be produced all at the same time, by the vibration of molecules; and the greater the linetic energy of the molecules, that is the higher the temperature, the greater is the tendency to the formation of light-waves and actinic waves.

When the rare :und infusible earth ealled thoria, mixed with a little ceria, is heated in the hot region of a Bunsen flame, we have the bright incandesence of an Aucr von Welsbach mantle. Other rare earths present analogous efleets; marnesia and lime and zirconia have also been variously applied for the purpose of produeing luminous ineandeseence, as in the lime-light, in whieh lime is heated by an oxyhydrogen flame.

The temperature which an electric spark eauses the air in
its traek to attain makes that air glow brightly, so that it luminous flash is producul.

When a hydrocarbon gas or vapour is burned in a flame, chemical changes ocenr: acetylene is produced; the acetylene contains much stored-up energy: when heated to a certain teuperature it suddenly deeomposes, with great evolution of energy: the clecomposition is explosive: the temperature of the hydrogen and carbon produced by the deeomposition is very high, and a large proportion of the waves into whiel the surromuling Lether is thrown eonsists of waves of ligh frequeney ; whence the Luminosity of a candle or gas-flame. Besilcs this, we have heary hydrocarhonaceots residues from the hydroearbon molecules, which are heated by the combustion of the hydrogen ; they become white-hot and emit light, until they meet sufficient oxygen to burn then away, directly or indircetly, into water and carbon-dioxide.

When chemical union is rapid enough to raise the temperature, light may be produccd: copper filings produce a flash of light when dropped into chlorine ; phosphorus burns brightly in oxygen. But if the process of chemical combination be slower, so that the Heat libcrated during the chemical combination is largely radiated or conducted away as it is evolved, the Tcmperaturc thercfore not rising materially, the Waves produced may be all too slow to produce the sensation of Light.

But not always so: phosphorus left to itself in air combines slowlr with oxygen, and radiates light-waves: dry wood, dnring oxidation by eremacausis or slow decay, often shines in the dark : so do flsh in the first stage of deeomposition: and many animals have some process of oxidation, not well understood, in which nearly all the radiations are luminous, as in hydromedusidae, in the noctiluca, in the glow-worm, and in the contracting musele of some marine annelids; while some animals aetually have the production of Light of this kind under the control of the nervous system, as in the glow-worm and in a fish called photichthys, which has an illuminating organ with which it temporarily illuminates its prey.

The thrce kinds of Ether-waves arc therefore esscutially one in their nature ; and it is only for convenience that we divide them into dark heat-waves, light-waves, and actinic or chemical waves. Very frequently we hear of dark
leat Rays, light-my's and wetinic rays; but this expression leally means the same thing, with this dillevence, that when we speak of "rays" instead of "waves" we pay less attention to the mechanism hy which the energy travels though the Fither, and nore to the directions in which it travels.
'The wider the amplitude of the vibration, the streater' is the heating power of the radiation, or the brightness or intensity of the light, on the power of eftectinys chemical decomposition ; these being' all proportional to the square of the Anpplitude.

Colour.-A succession of waves of one lierpuency unly, il the Frequency be within the limits of Visibility, produces a sensation of some particular colour ; just as a succession of air-waves of a particular frequency, within the limits of andibility, produces a Sound of a particular: pitch. Eacli particular frequency corresponds to a particular colour: within certain limits, from about $\left(395 \times 10^{1^{2}}\right)$ to about $\left(480 \times 10^{12}\right)$ oscillations per second, each particular frequency corresponds to a particular kind of Red, the slowest producing the most crimson red and the most rapid the most orange red; but we may group these together and call them collectively the waves of red light. So for Orange, all the way from reddish orange to yellow-orange; Yellow, all the way from orange-yellow to greenish-yellow; Green, all the way from yellowish-green to bluish-green; Blne, all the way from greenish-blue to violet-blue ; and Violet, all the way from bluisll-violet to the limit of visibility.

In what we call the white light of Daylight there is a mixture of waves, of dillerent frequencies. In this light, at sea level, the intensities or brightnesses of the diflerent groups of waves are somewhat as follows:-Red 54 , orange-red 140 , orange 80 , orange-yellow 114 , yellow 54, greenish-yellow 206, yellowish-green 121, green and blue-green 134, cyan-blue 32 , blue 40 , ultramarine and blue-violet 20 , violet 5 ; total 1000. If we take this as
standard daylight, and if the red and orange-red, for cxample, should come to be present in a larger proportion, or the colours other than red and orange-red in a swaller proportion than in standard daylight, the daylight would le rerldish, as it sometimes is in the evening.
suppose light-wares of all frequencies within the limits of what we have called red light, from crimson to orange, say from (395×10^{12}) to $\left(460 \times 10^{23}\right)$ vilytations per seconl, struck the eye simultaneously, the innpression on the Eye would be that of Red light ; and it would be an average red light. Precisely the same effect would he produced on the Eye if the waves were all of one freqnency, an average frequency, say about $\left(430 \times 10^{12}\right)$ per second. Similarly if we had waves striking simultaneously whose frerpuencies ran from say $\left(5 \pm 5 \times 10^{12}\right)$ to $\left(585 \times 10^{12}\right)$ per second, the effect on the eje would be that of a Green, an average green, such as that prorluced by pure waves of a single freruency of about $\left(570 \times 10^{12}\right)$ per second. But now we come upon a curions phemomenon. If we allow the undulations of the red group and those of the green group to enter the eye simultaneously, the effect on the Eye is neither red nor green, but Yellow, such as might be produced by waves of a single frequency of say $\left(520 \times 10^{12}\right)$ per second, but somewhat paler or, as it were, diluted with white; and this occurs though there be no yellow light whatever entering the Eye. The sensation of yellow is therefore not necessarily due to the impact of waves of the particular frequency which in a state of purity produce the sensation of yellow: for the same sensation may be produced by mixtures of waves of other frequencies.

This result is very singular. It is as if when we listened to a chord sounded by an orchestra we heard only one note, of a kind of average pitch : in that case our ears would be unable to tell us what instruments were playing, for the same arerage might be made up in
an infinite variety of ways. Similarly, om r byes do not enable ns, jul looking at a (logon', to say how hat colone is mate up, in what way the Ether is vibrating: and the particular impression received by the eye will defend not only upon the Vibutatons communicated fo it through the Ether, hut also upon the behaviour of the eye itself, normal or otherwise, when those vilpations impinge upon it. The many persons the impression received is different from that received by the majority of mankind: fast such persons are frememally colourblind, completely or partially mable to perceive particular colours.

If in a similar way we ty to hand yellow and blue the resultant sensation is not one of green, but of white ; yellow and blue are called complementary colours. (freenish-yellow and violet produce the same result ; ant so do many other pairs of colours, complementary to one another, and producing white when blended.

Suppose we take a yellow piece of glass and a blue one ant with these, with the air l of two lamps L, make a yellow spot

Fig. 132. and a blue spot on a screen S . We may shift the lamps so that the position of these two spots varies. Make them coincide; the result is yellowish-white if the lamp which makes the yellow spot be too near, hunnishwhite if the other lamp be too near, and pure white if the lamps be at proper relative distances. Yellow light and bine light thus make white light, even though the vibrations producing the yellow ant the blue light respectively be not single but mixed; a circumstance which emphasises the part played by the Eye itself in the phenomena of Colons.

If we paint a card half yellow and hall blue and rotate it rapidly on its centre, it appear's a more or less satisfactory white: the impression of the yellow colon has not died away before it is snccected by that of blue, anil vice verse. The tiro colours are therefore seen practically simultaneously, and their effects are blended in and by the Eye itself.

If on the other hank we mix yellow and blue pigments, we obtain a green. The reason is that neither the yellow nor the blue light from pigment is ever fire: both contain green : the yellow and the blue form white, but the green remains:
and the result is a freme, which is in stech a dase always whitish.

All this shows us that when we see light producen, whether white or coloured, we must have some means of investigation other than that afforded ns hy one eyes aloue. Our eycs allone will not enable us to study the composition of the light, that is. the presence or ahsence and the relative strength or feebleness of the different component ware-motions which make up that agreregate wave-motion, to which the sensation of light is due. This superior means of investigation is furnished us by the Prism.

Let us fit up a box with a small slit at A ; belind A fit $\left.{ }^{1}\right]_{1}$ a glass prism B, with its length parallel to the slit ; and at the back fit up a ground-rgass screen (${ }^{\text {. }}$ Turn the whole towarls the sun, and on the ground-rlass screen there will be seen a many-coloured band of

Fig. 133. light. On a larger scale, this may be done with a slit in the shutter of a darkened room, a prism inmediately behind the slit, and a linen screen on the opposite wall ; and a mirror may be used outside the window in order to reflect the sunlight horizontally through the slit. For many purposes, however, the simpler apparatus described will serve. The end of the band marked R is red; the end marked T is violet; and letween the red and the violet we have all the intermediate colours, orange, yellow, green, and blue. It will also lee noticed that the spectrum, as this many-coloured land of light is called, is wholly to one side of the path which the light would have pursued but for the intervention of the prism. The wares which produce the red components of daylight have been turned asile or refracted so as to reach not O but I; the waves of violet have been more refracted, and have found their way to V ; waves of intermediate frequencies have gone to intermediate positions. We thus have all the components of the sunlight marshalled
before us side by side, and we can see what they are. The spectrom is really longer than it looks, for the shorter ultra-violet waves are refracterl to positions beyond V, thongh we cmmot see them: if we replaced the ground-glass screen by a photographic phate we could, howevcr, make a photograph of the ultra-violet invisible part of the spectrum. The longer infra-red or heat wases, also, are refracted to positions between O and R.

Now let us try to ascertain the cause of the colour, say of a piece of green glass. We look through our apparatus of Fig. 133, and observe our sunlight spectrum ; then between the sun and the slit A we insert our piece of green glass. All at once a part of the spectrum disappears: the red disappears; most of the orange and yellow and some of the blue and violet also fail to come through the green glass, being absorbed by it; but the green part of the Spectrum continues to shine brightly, perhaps with some of the yellow and blue or with traces of the orange or the violet. Different samples of coloured glass will cause different appearances in the spectrum of the transmitted light. For example, some samples of red glass entirely cut off all green light; others will not do so, and are therefore not fit for use as a protection against green light in photographic work ; and jet both kinds may, to the Eye, appear equally satisfactory in their depth of red colour.

The Spectrum enables us to find out a good deal about the behaviour of the molecules, whose vibration originates the Ether-waves. When the vibrating molecules are those of a gas, the molecules are fairly independent of one another, and their Yibrations are then as simple as the constitution of the molecule will permit them to be. The corresponding Waves are then as nearly simple as they can be; and in the Spectrum produced, the light is restricted to mere bright lines, which correspond to the narrowest possible images of the slit. As the gas increases in Density, say on compression, the molecules
hamper one another and the lines spread out into bands ; and as the compression still increases, the molecules enter into the most irregular vibrations. 'The conserpuence of this is, that in the light coming from a solid the lines or bands of the spectrum spread out, so as continuously to light up, more or less, the whole region from red to violet.

If we take a white-hot iron ball, the spectrum of whose light is continuous, and watch its spectrum as the ball cools, the violet end of the spectrum is seen to fade away. This fading away is continued down the spectrum until there is very little left except the red region of the spectrunn ; at that stage the ball is "redhot"; and as the cooling continues, when the temperature falls to about $525^{\circ} \mathrm{C}$. this red region of the spectrum also fades away ; but the ball still acts as a source of Heatwaves, or "radiates heat," as may be felt on bringing the hand near it. It never does cease to radiate heat; there may, it is true, come a time when it gains as much heat from other bodies as it loses to them by radiation, so that a condition of equilibrium is attained ; and under ordinary conditions this is what continuously occurs: but if into the neighbourhood of bodies at ordinary temperatures we bring a block of ice, we see that these bodies are radiating heat: for they cool down while the ice melts. To the ice they act as comparatively hot bodies: and the ice does not make up to them for the Energy which they lose to it. Radiation of Heat from a body could only cease if the molecules were brought to rest; that is, if the temperature were reduced to absolute zero.

Hence we see how in a clear tropieal night the radiation from the earth may eanse so mueh uncompensated loss of heat that ice may form ; and how dangerous it would be to sleep outside under such a sky.

Accordingly, Radiation is always going on ; and two bodies equally hot exchange energies by radiation; but they do this to an equal extent, and there is thus no
change in their relative 'Tcmperatures, 'Thes is Prévost's Law of Exchanges. If one boty be hothe that the where, the exelange of ratiations alsays tells in fiwour of the cohler motil erpabity of temperature is teacheel: aml the ratiation from a borly groes on, whatever be the radiation to it from survonding herlies. The hightness of it candle or the amome of heat radiaten from a fire does not depend on the presence of objects to be illaminated or warmed.

When a borly is surrounded by hot walls, the radiation from the boty to the walls comes to bee erpal to that lowards it from the walls: then equilitmiun is attained; but when this condition has been attaned, the temperature of the body enclosed is equal to that of the walls surromuling it.

Henee in an incubator for egys, or in a thermostatic nurse for prematurely-bom infants, the eggs, or the infant, are kept at the same temperature as the walls of the apraratus in which they are enclosed; except in so far as the needful current of air may tend to prevent this temperature being attained.

The amount of Energy received by a surface, through Radiation from a distant point, is inversely as the square of the distance from that source.

A candle at a distance of 1 foot will illumine a printed lage as well as a 36 -candle lamp will do at a distance of 6 fect.

If the source be a surface, the same law is approximately oleyed at sufficiently great distances.

A brom illuminating surface, sueh as a white wall, is equally bright when looked at at all distances throngh a narrow conical tube. Cluse at hand it appears brighter, area for area: but at a greater distance more of it can be seen: the aggregate effect "ron the observer's eye remains the same.

When we feel too warm near an open fire, we withdraw to a greater distance.

The least amount of illumination which is suitable for ordinary work seems to be about ten "metre-candles"; that is, ten times the illmmation produced by a candle at a distance of one metre, or 40 inelies.

The Energy receised per Unit of Areanderndsupon the obliquity of the recerving sultace. If the somere be at AB and the waves Ilow towards ('I), if the meceiving sulace be tilted to the position (LE, the thergy

Fig. 13:4. received per anit of area is to that received in the position CD, as (DD : CD ; that is, it varies with the cosine of the Angle D)(IE.

The illumination clue to smalight is therefore greatest at noon aut falls ofl as the day ulvances.

If a borly realily racliate heat away, it must, in oritur that the Equilibrium of Temperature between it and surrounding bodies should be kept up, absorb as much ; it must therefore be a good absorbent. Conversely, good absorbents of the energy of ether-wares are good radiators of the same.

A brightly-polished metal vessel is a bad absorbent, as is shown by the circumstance that it is a good reflector: being a bad absorbent it is a bad radiator, and it will retain a high temperature a long time, much louger than a thinly-blackened sufface will. If soot be sprinkled upon snow, the snow will readily melt in the smm's rays: for the soot is a good alsorbent and itself beconcs heated.

The Law of exchanges applies not only to the aggresate Energy gained or lowt by it borly through radiation, but is also true of each particular frequency. As yelluw glass alsorlus blue light, so when heated it gives out blue light.

The phemomenon of Resonance, which we have met with in relation to sound-waves, applies also to Ether. waves. A set of molecules impingel upon by a mixture of Ether-wares, of which some have the same Frerpuency as the natural free vibration of the molecules, will themselves be set in vibration; but in this, they rob the whole wave-system of the particular component waves which ellect this result. If Light from a white hut iron ball, which has a continuous spectrum, be
themsmitted throught the vanom of sodium, it is found, on examining the speetrum of the transmitted light, that it now presents a dark line in the yellow. A particular kind of light has been cut out from the aggregate ruliation ; component waves of a particular Frequency lave been denied trusit, and their Energy las loen absorbed by the sodium-vapour' ; and the particular Frerquency of these wayes is precisely that of the waves cmittel by loot sodium-molecules, as for example, when salt is put in the wick of a spirit-lanp so as to produce a yellow flame. This yellow spirit-lanp flame has a spectrum which consists of nothing more than a bright band in the yellow (this band being really double). In sunlight there is a dark band at this place in the spectrum ; which shows that between the hot boty of the sun and ourselves there is a cooter solar atmosphere containing sodium vapour. As in this instanee we are able to state the presenee of sorlium in the solar atmosphere, so in many other instances the presence of particular chemical elements, or even of particular conditions or eombinations of these, may be ascertained by means of the dark lines produced by absorption, or by means of the distinctive bright lines of the spectrum produced by incandescence. This is the basis of spectrum analysis, which implies a practical knowledge of the charaeteristic bands or lines of each element. In sunlight there are a good many of these dark lines or bands, whieh are known as Fraunhofer lines.

To obtain an incandescence-spectrum, with its bright lines, we may volatilise the substance to lie examined, in a hot flame sueh as a Bunsen flame, and examine the light of the flame.

To obtain a spectrum showing what light is absorbed by a given transparent substance, we transmit a bright white light through that substance, and examine the light transmitted. For example, if a strong solution of
blood be interposed in the path of a beinn of light which is on its way to form a spectrum on a sereen, all the spectrum, with the exception of it portion of the red part of it, disappears. As the lipnid is diluted the spectrun lengthens out; orange, yellows, greens, blues, are successively added; but there always remain two relatively dark bands ("absorption-bands") in the spectron, in the yellow and in the green, letween the dark lines in the solar spectrum known as the Framhofer lines D and E. These dark bands are characteristic ; :mbl they enable the presence of hæmoglobin, and therefore of blood, to be detected.

If the blood be treated with sulphide of ammonium, the hamoglobin will be reduced; its elremical constitution changes, and with it the absorbent power: the absorption band is now a single band situated between the two preceeding. Carbonic oxide and nitrons oxide also produce distinctive changes in the absorption-spectrum of hremoglolin.

If we look at a solution of blood as it is being progressively diluted, we find that it is at first red, but becomes more and more yellowish, as well as paler in its lue. The same effect is obtained on looking at layers of different thicknesses. If a strong solution of blood be put in a wedge-shaped vessel, the thicker portion of the solution looks red while the thinnest portion looks yellow. The reason of this is, that the different colours are absorbed in different proportions ly the solution; and small differences in these proportions accumulate, so as to canse great differences in the composition of the light transmitted through different thicknesses.

For example, if we take as our original light four portions of the spectrun of equal aggregate brightness, and if the first mm . thickness of the solution allow $\frac{5}{10}$, $\frac{7}{10}$, $\frac{5}{1 \pi}$, and $\frac{5}{10}$ of these respective regions to pass through, the ratios of brightness in the light fransmitted by a thickness of 1 mm . will lie $8: 7: 6: 5$; but the second mm. thickness will only allow名 of $\frac{5}{10}$, $\frac{5}{10}$ of $\frac{5}{10}, \frac{6}{10}$ of $\frac{6}{10}$, and $\frac{5}{10}$ of $\frac{5}{10}$ to pass. At the

10th ment. thickness, the rathes of hrightness will be $0 \cdot 8^{10}: 0 \cdot 7^{10}: 0 \cdot\left(8^{10}: 0 \cdot 5_{1}^{10}, 00^{0} 0 \cdot 107: 38: 0 \cdot 02 x 21: 0 \cdot(006050: 0 \cdot 00098\right.$, or about $8: 2 \cdot 11: 0 \cdot 15: 0 \cdot 07$. A groul) ol lalys which is merely somewhat loss mondily transmitted by athin layer is thus, relatively, almost, antirely extimgnishod ly a thick laym, and this intluences the resultant colome of the transmitted light very sreatly. Sobstances prosonting this kind ol diflerence of coloms in thick and in thin layers are sad to be dichroic. Chlorophyll appears green in thin layers, real in thirk. Iodine vapour transmits a blue group and a red group, as also ultra-violet rays ; torethor these produce an impression of purple: through thicker hayers the bhe is alone transuntem, and the vapon appeas blue. Venous blood, on a solution of reduced hamoghobin, appears purple-charet in thick layers, greenish in thin.

If we take a prece of red and a piece of green glass and ury to look through both at the sane time, we find that hardly any light comes through; what the rerl grass luts through is what the green glass absorbs, and vice versê.

If a substance allow light-waves to pass throncrh it, but will not allow dark heat-waves to do so, it is said to be transparent but adiathermanous: for example, a crystal of alum. If it allow dark heat-waves to pans throush it, but not light-waves, it is said to be diathermanous but opaque; for example, a strongs solution of iodine in bisulphide of cambon, or a very thin fitm of vulcanite.

Lampblack is very diathermanons to the slowest heat. waves, anl air pery adiathermanous to some of them. Glass is very transparent and diathermanons, but is somewhat opaque to the ultra-violet rapid ether waves; a quartz prism or lens allows a great amount of ultra-violet radiation to pass through it which a glass frism or leus would extinguish, so that while with a glass prism the mlta-violet invisible part of the spectrum is comparatively short, with a quartz prism it is from six to eight times as long as the visible spectrum. Silver leaf, just thick enough to be opaque to light, transmits ultraviolet rays.

A photograph can be taken through a very thin film of vulcanite or of coal tar; for these substances are largely transparent to ordinary ultra-violet rays.
(ilass coloured a erremish hue by unoxidised protoxido ol iron is sugntarly adiathemanous, wnt may br msed as in heat-ophitutu flo-screon. For lamp chimneys it is not su nseful, for the chimmers beome hot and themselves radiate hait.

A :mbstaner which allows light for pass through il, but at, the same tine seaters it in all directions, is said to be translucent; " $\because \%$. sromud glass. If an electric lann] be hold in the month, the effect of transtucency is very singman ; and if it be let. up into the pust-misall cavity, it is still more so, for the cyes themselves then appear to glow.

So litr as we hare treated of the colour of coloured objects, it lats buen the Colom of transparent objects, Which is clue to absorption and subtraction of some of the light which endeavours to traverse the selectivelytransparent object. The colour of opaque objects, as seen by ordinary reflected daylight, is also due to absorption. This is not so olvions. A white object is one which reflects ordinary daylight without absorption; a green object (for exanple) is one from which the incident daylight is reflected, shorn of a number of its components such as, together, correspond to a sensation of red. The incident daylight laving lost its red during Retlexion, appears green after reftexion. What is it, then, that happens during Rellexion? TVhat happens is that the incident lisht, or a proportion of it, travels to a certain depth below the surface of the coloured oliject and is rellected thore, not at the very surface itself. In its rery short prath in the substance of the coloured olject it is selectively absorbed. On the very snall or molecular seale, the phenomenon is one which may le very roughly illustrated on a larger scale by mixiner chatk or magnesia powder witle a blate solution of sulphate of copper: the mass looks like a bluish cream. The incisent light trarerses the solution until it reaches a praticle of chalk, and is then rellected to the eye ; but on its way it experiences the selectively absorbent action of the copper solntion, which robs it of red, etc.; so that on emerging it can only be blue. In the sane waty a
piece of bhe material reflects light from a little way below its smeface : and the greater the thiekness through which the light travels before fimatly emerging on reflexion, the deeper will be the colour produced.

Thus when pigments are mixed with oil, there is less reflexion at any given depth, and the light penetrates farther before being completely turnel back than when the sane ligments are used as water-colours ; so the colours are deeper and richer. Again, if there be bit one reflexion, the colour prodneed is not as deep as if there be many reflexions, but is more mixed with white light reflected merely at the surface; so that a gold vase appears of a mueh richer tint internally than externally, because of the multiple reflexion which oceurs there. If on the other hand we limit the thickness of the film which the light ean traverse, we partly elininate the effect of absorption ; and thus if we mix soap with a hrown liquid and make soapsuds with it, the froth appears nearly white : or if we grind coloured substances to powder, in many cases they are much paler than the same substance in solid bulk; for example, coloured glass ground to powder is nearly white.

We may produce films of gold leaf thimer than the superficial film within which this absorptive aetion takes place on reflexion. With such extremely thin films (such as may be made by fixing gold leaf on glass and dissolving some of the gold away by means of a dilute solution of eyanide of potassium), we find that the film is transparent to green or to green and violet light, according to its thickness: the liglit whieh passes through appear's greenish-hine or blue or violet, the last colour being that of the thinnest films. Films of silver, in the same way, allow a pleasant greenish light to eome through ; and the objeet glass of an astronomical telescopre intended for solar observations is often very thinly silvered, so that the heat-waves are reflected away, in order to protect the eye of the observer.

There may be cases in which the whole of the light which impinges on the olject is absorbed: the object then appears black ; that is to say, no light comes from it to the eye. This, in daylight, is the condition of ordinary black objects ; but there is hardly any black object which is wholly destitute of reflecting power, and the usual cause of what we call Blackness is not that no
lisht comes from the object to the eye, but that very little comes.

The blackest object looks gray in comparison with what is called Chevreul's black, which is what we see when we look at a hole in the sile of a large box linch with black velvet.

Again, il we use, as our incident light, any particular kind of light which happens to be wholly absorbed by the olject, that olject will appear black: if for example we louk at a yellow and a blue flower hy the yellow flame of a spirit lamp with common salt (NaCl) in the wick, the yellow flower appears distinctly yellow, for it does not absorb yellow light on reflexion; but the blue flower. looks black, fur it absorbs all the yellow light and reflects none of it ; and as there is nothing else to reflect, the impression in the eye is that of a black flower.

When sunlight falls on a white wall, actinic or ultraviolet waves are reflected from it along with the lightwaves, and what can be seen can be photographed ; but if it fall upon green leaves, the actinic waves are mostly absorbed by the leaves, and there is very little of these reflected, so that foliage is very difficult to photograph. There is very little impression made on the exposed plate, and in the resultant photograph, foliage comes out disproportionately dark.

When Ether-waves are absorbed by a medium through which ther are sent, the energy of the waves is transformed into Heat of the molecules of the medium ; but what passes through freely does not heat the medium.

In very clear air. on mountain tops for cxample, the sunshine streams through the air withont heating it, and the air may be very cold: but if there be dust in the air, the dust bccomes heated, and this dust then heats the air. Heat-wavcs may pass throngh very clear ice without melting it: but if there be any dust in it, each prarticle of dust acts as a contre round which the icc melts, forming star-shaped cavities containing water.

When Ether-wares are absorbed at the surface of a body, the surface becomes warm.

A black suit of rlothes beromes warm in the smanhtif whre

 fotiation, the molernles lave been fome won ly shorter waves, and have llomselvas miginatul longer waves al biak heat. leven within the limits of fremmentey
 to this oceurs, and is called Fluolescence. If wu tilko a solution of quinine smblate on dichlonile, and phas a bemm of light. thomerle it, the solution surms selfluminous for some distance alons the tratk of tha bexum of light. Ultra-violet, violel, and lulue lims finll mon it ant are absorbed ; and the motecules are set in slower vibration, which rrives rise to the sensation of a greenish-lilue light, that light which is seen about the edge of a solution of guinine in a phial.

There are a great many lluorescent substances, racle of which emits light of a chistinctive colour: petrolem or shate oil emits a green ; a solution of turmeric in castur oil a sreen ; chlorophyll in solution a red; a solution of datura stramonium in alcolnol a greenish-bhes ; uranium glass a greenish-yellow. The cornea and the rots and cones of the retina, ank the media of the eye, are also slightly fluorescent: and this may account for some persons being able to see sone of the nltra-violet. When we take a sheet of paper painted with a fhorescent solntion, say one of sulphate of yumine. and use this as a screen uron which to form a spectrum. we lind that the ultra-violet rays make the soreen shine over an aren which, with a quartz prism, is six to eight times as long as the ordinary visihle colomed spectrum: and the effect of the ultra-violet rays may thus be rendered visible.

If the Hworescence be continued for some fime after the body has ceased to le shone upon, the sulustance is said to le phosphorescent. A well-linown example of this is Bahnain's luminous paint, which shines in the dank after being exposed to light; and the same
properey is passessed to a smatl extemt, the luminosity beins comtinuml for a shom time only, ly iny paper, silk, and coun the haman teeth. 'The properlies of flumcercuce and thowhorescence aro sery widnly distribnted: and apparenty all bodics are phophoresemt when exceedingly cold.

Lingte which has passen through a suffecient thimkness of quinime sohution cammet canse fluorescence in a second layer : those waves which were competent to set me the fhorescence hate hech absorbed.

If we cause a body to absorb so much radiant heat that the bnery takn up hy rases its temperature, it may become hot, and even whitehot. We may, for example, pass the light from an clectric lamp, which is accompanied by radiant heat, fhrongh a solution of imline in bisulphide of carton: the hat-waves come through, hat not the light-waves: these heat-wares may then be concentrated by a lens or mirror mpon a solid object, which may become white-hot, and will then emit slort light-waves as well as lomger dark heat-waves. This phenomenon is called calorescence.

Apart from this, there are very few cases in whiel the impact of longer lieat on light-waves canses the naliation of shorter light-waves. Chlorophane, a kind of fluuspar, is an example; it radiates an emerald green light when dark heat-waves strike it: and chlorophyll radiates a red light when shone mon ly a still slower red light.

The velocity of propagation of Ether-waves is ascertained by two astronomical and two terrestrial methouls, which are used to determine the Telocity of Light. The mean result is that Light-waves travel through the Ether of space with a velocity of $30057,400000 \mathrm{~cm}$. per second: that light-waves of different frequencies, at nuy rate from real to violet, travel with the same speed; and it is inferred that there is no difference between the waves of Light and the longer waves of Radiant Heat or the shorter waves of Actinic Radiation, except in respect of wave-lengilh or amplitude.

Just as we measure the Velocity of Somm ly watching the time which elapses between secing the flash from a distant gun and hearing the belated report from it, so we employ astronomical phenomena to ascertain the Velocity of Light. Jupiter's satellites seem belated in their movenents when dupiter is further from us; and the reverse when he is nearer: the reason being that the light takes a measurable time to come. Again, light actually takes some time to travel down the tube of a telescope, so that we have to tilt the telescope a very little ofl the true in order to enable us apparently to look straight at a star, as the carth is being bowled along in its orbit: and this tilt is measurable. Again, we may make light travel between two teeth of a cogwheel, go to a distant mirror, be there reflected, and come back: but before it has got back, the wheel may liave rotated to such an extent as to block its path by means of one of the tecth; and then, if we adjust the speed of the rotating cogwheel so as to allow the light to return through the next gap between the teeth, we know how long the light has taken to go and return. Or the light may strike a rotating mirror, aud go to a distant fixed mirror and back; by the time it has come back the mirror may have rotated so as to reflect it, on its return, not towards the original souree but in another direetion : and the amount of this deviation of path is measurable.

The measurement of the brightness of a source of light depends on the law that the illumination, at any place, varies inversely as the sfuare of the distance of that place from the source.

In a Photometer, two sources of light are placed at such distances from an illuminated surface that they appear to proluce the same effect: the illmminations produced by the sourees A and B are then proportional to the squares of the distances of A and B. Thus if B be a standard candle at a distance of 1 ft ., and A a gas-flame at a distance of 4 ft ., if the elfeets be equal the sources are to one another in the ratio of $1^{2}: 4^{2}$ or $1: 16$; and the gas flame is equal to 16 standard candles. The Equality of Effeets produced is ascertained by various methods: of these the simplest is that of Rumford, who used the two shadows of a stick promeed by the two lamps and adjusted until the two shadows appeared similar: but if the lamps give differently coloured light, the shadows seem differently coloured and are difficult to eompare. In Bunsen's grease-spot photometer, a grease-spot is usel in a piece of opaque paper ; light from towards the front will make
the ervase-spot appear comparatively fark: light fom lehimi temus to make the grease-spot comparatively herght; when the distames are properly adjusted the grase-spot disapmears. Nimers are provided whichemalde both sides of the pater to bo looked at at one shatt from merpalities in the two eyes of the olsenver, this method would be a somal one, mrovided that the white paper refleeter all the light which fell upon it while the grease-spot itself rellected none, but was perfectly transparent. luLummer and Brodhun's photometer this inca is applicel by purcly opdical methods. A block of glass, F'ig. 1:35u, is cut thromgh as in b : one prism is then gromme away as in c^{\prime} : alld the two prisms are potished and put together as in d. Light from S^{\prime}, Fige läd, is seen by an observer at E to be completely reflected from the

Fig. 135. rim ; but the central part appears dark, for the light striking it has gone completely through towads E', and none is refleeted towalds the eye. Similarly, light from S would come through the central part to his eyc at E, but none would come throngh the rim. If the lamps at S and S^{\prime} be at proper distances the brightness of the rim and that of the central part will be the same, so that no distinction can be observed between them. In practice, instead of lamps at S and S^{\prime}, mirrors are used at S and $S^{\prime \prime}$ to throw light on to the prisms from the opposite sides of a white-paper-covered screen at L, which has its two sides respectively illuminated by the two lamps to be compared: and the distances of these two lamps from this screen give the data reguired for the calculation. With this instrument only one eye is used.

There has been a goorl deal of discussion about photometric standurds and methods; one outstanding difficulty is that the law of the inverse squares is only truly applicable when the somes of light are mere points ; and another is that it is barely possiblc to obtain equality of elfects unless both sources yield light of the same colour. Hence it has been necessary to devise instruments called spectrophotometers, whereby the brightnesses of the respective parts of the spectra produced by two sources of light may be suceessively compared.
"Polarisation of Light."-During its transmission through the Ether, the wave, being a transverse-ilistortional wave, is transverse to the direction of propagation, as though the Ether were being pushed and
pullen parallel to the wave-front, wruss flu line of direction of propargition of the wave. (We are speaking now of what occurs in free Ether or in air, not of what happous inside a erystal.)

Suppose A is a sonree of liglat-waves, and AB any particular direction along which the waves from A expand. At the point 13 let us suppose the motion of the
 Ether to be from side to side, along the pelper; at right angles to AB . If the wave-fiont le broar, the movement will be participated in by the whole wave-front, so that the whole wave-front will swing from Fig. 13\%. side to site, always at right angles to a line drawn from the source A (Fig. 137).

If however we confine our attention to what happens at one point B of the wave-

Fig. 137. front, we are brought back to Fis. 136, ant light in which the point B oscillates transversely, from side to side, in one plane is called Plane Polarised Light.

Next let us suppose the point B to descrilse a little circle, alternately rising above the plane of the paper in Fig. 136 and sinking bencath it ; all points in the wavefront will execute corresponding movements ; such light is said to be Circularly-Polarised Light.

Similarly if the point B describe little ellipses in the same way, the light is Elliptically-Polarised.

Now let B, keeping always at the same distance from A, describe the most irregular little transverse movements that we can imagine ; the only condition imposed is that there shall be no tendency to vilorate, on the whole, in any one direction any more or any less than in any other : then, whatever B does the whole wave-front participates in ; and this is the condition of the wave-front in Common or Natural Light, ordinary sunlight or lamplight.

The next thing we have to understand is the action of
a polariser. In order to muderstand this wo lad letter look at the point B along the line AB , as a line of sight. Then the novement of li in Fig. 136 would arpear to be simply a line executed in one plane ; and this is our plane-polarised light.

$$
\stackrel{-}{c}-\cdots-{ }_{\square}
$$

Jis. 138. Circularly-polarised light would lave its movement correspondingly represented by the diagram Fig. 139 ((it) or (b). But now let us suppose that the

Fig. 139. wave-fiont in which the motion is that represented by Fig. 139, finds its way into a region in which oscillation in the direction CD is freely permitted, but oscillation across the plane CD is prevented. The result will be that on emergence from such a region, all the oscillations athwart the plane CD will have been absorbed and extinguished, and only those parallel to C1) will come through. The circularly polarised light has then been reduced to plane-polarised light, of hulf the original intensity or energy. The region of space possessing this peculiar property would, in producing this eflect, act as a "Polariser." But there are crystals which act in the way imagined: a crystal of tourmaline does act as a Polariser : and any light which finds its way through it emerges plane-polarised, that is, with its vibrations restricted, at any point of the wave-front, to one plane.

A very thin layer of tourmaline may act as a partial polariser: that is, it

Fig. 140. would not entircly abolish the movement athwart CD, but would reduce it, so that the light would be "partially polarised " and would, in the instance sup-

Fig. 1+1. already plane polarised, its oscillations being in the plane EF: what would be the effect of the polariser
"pon it? If thick esough the layer of tourmaline would reduce it to plane-polarised light whose oscillations were confined to the plane (3): and it wonld reduce its Amplitude of oscillation from J3F: on J3F to Be or Dol.

If Ef were originatly at right amgles 60 (1), al would have no length at all; the oseillation would have no amplitude ; that is to say there wonld be no oscillation transmitted ; and the merming of this is, that the polariser would be opaque to plane-polinised light uscillating in a plane at right angles to (DD. This is what takes place if we take two crystals of toumaline, lay them across one another, and try to louk throngh them; we see nothing. The oscillations which have come thronglt the finst tourmaline are completely intercepted by the second ; and thus crossed tommalines produce perfect darkness.

When the light is plane-polarised so that its oscillations are confined to the plane CD, it might be expected that if the light in "question were said to be plane-polarised

Fig. 142. in a "plane of polarisation," that that plane of polarisation would be the phane CD. But this is not so. For reasons which are beyond the scope of this volume, planepolarised light whose oscillations are confined to the plane CD (Fig. 142) is said to be planepolarised in the plane] 'P' at right angles to CD (that phane beciag also at right angles to AB , the direction of propagation of the wave), and the plane of polarisation is the plane PP', not the plane CD in or parallel to which the actual oscillations occur.

Under particular circumstances which will be explained later, the plane of polarisation of plane-polarised light may be rotated, so that the oscillations swing round as the plane-polarised light travels along. This phenomenon goes by the name of Rotatory Polarisation ; and it must be understood before we can understand the saccharimeter, which is used in estimating the sugar in diabetic urine.
1)ark lleat-waves and Actmic waves may be polatised in precisely the same wiry as the wase of orlinary lisht.

Reflexion and Refraction

If a ray of light fall upnen a smooth surface of glass or other transparent medium, it is generally both reflected and refracted: that is to sur, if the light tritrelling in the direction $A O$ strike the glass at O, part of the light is reflecterl at O in the direction OB, and fart is refracted or hent at O, from the direction AA into the direction OC.

We have alrealdy seen (plp. 45 and 46) what these directions are. The angle of

Firg. 143. reflexion is equal to the angle of incidence: and the sine of the angle of refraction is equal to the sine of the angle of incidence multiplied by the index of refraction.

If the incident light travel along a line $A_{v} O$, at right angles to the refracting surface, it pro-

Fig. 144. ceeds along the same line towards C_{v}, and is not refractel at all: if it go along A, O, practically but not quite parallel to the refracting surface, it will be refiacted into a direction OC, (Fig. 144) ; and it is not possible for any light to be refracted into any direction between OC, and OII ; for there is no possible Angle of Incidence left which could give us so large an Angle of Refraction.

If therefore we take a thick slab of glass and cover it all except one side and the bottom with black paper, with a small aperture in this, in the middle of the top at 0 : and if we put a layer of white paper at l.J and look in at the sile, while the top of the slab is exposed to the open sky: we shall see

Fig. 145. that the paper is illmminated between the limits K and L , but
that leyom these limits no light reaches the faper throngh the aperture A.

Upon reflexion and refration the light doses not
 in tury case be in one plane, and then OJs is in the same plane, which is called the plane of incidence ; and O(: is also in that plane. The Plane of Incidence is at right angles to the reflecting surface.

There is always one particular angle of incidence at which the Reflected and the Refracted rays are, or temb to be, at right angles to one another. For example, if the ratio of the velocities in the successive media be : 3 to 4, as in air and crown glass, this angle

Fig. 146. of incidence is $53^{\circ} 8^{\prime}$.

This angle presents some well-marked peculiarities. At that angle no vibration of the Ether which is eflected in the plane of incidence can be reflected at all ; and the whole of such a vibration is refracted into the glass. If we reflect common light from glass at this angle, all the components of vilbation in the plane of incidence enter the glass ; and the vibrations in the reflected ray are restricted (or rather, are approximately restricted) to oscillation at right angles to the plane of incidence. The ray reflected at this angle is therefore plane polarised; and reflexion from black glass at the appropriate angle of incidence, the so-called Angle of Polarisation, is one of the means of obtaining Plane Polarised Light.

The nearer the actual angle of incidence is to this angle of polarisation, the greater is the proportion of the ineident light which is eut out in this way: so that all light refleeted from elear glass, water, ete is partially polarised, to an extent whieh varies with the angle of incidence or of reflexion. The refraeted ray is partially polarised to an opposite extent.

Turn back to Fig. 144: suppose the course of the rays to be reversed. Let light come from $\mathrm{C}_{\text {" }}$ in the denser
mediun ; it will le refiactel towirds $A_{\text {a* }}$. If it come from C, it will be refiacted towarls A, very nearly parallel to the smface of the glass. But lot it come from sonte print between C, and II: there is no direction left in which it can be refinteted at all: it is not refracted at all: it is wholly reflected within the grass, and the surface of the rarer medium is as effective a reflector as a metallic minror would have been.

By reason of this "Total Reflexion," a tumbler of clear water hell above the heal gives a clearmintor-image of objects on the table below it ; a bubble of air in water, or a test-tube containing air immersed in water, will, when looked at under a certain angle, appear to have as bright a mirror-surfice as that of mercury. If AB, Fig. 147, be a glass rod, onposite the extremity of which a lamp-flame is adjusted, the light cutering at the face A is mostly totally reflected along the ror, and that repeatedly. At length it reaches the end-

Fis. 140 . face B, which alpears very bright. Even thongh the rod be moderately bent it may transmit light in the same way: and a contrivance of this kind is used by surgeons and microscopists in order to transmit light. If the rod be silvered externally, there is no light lost laterally: bnt if it be not, there is always a slight lateral loss along the length of the rod ; and this lateral loss, which is greater when the outline of the rod is irregular", is ntilised in "illuminated fountains," wherein vertically ascending colnmus of water are illuminated from below, and act after the manner of the glass roul of Fig. 147; the column of water loses light all the way n p, and that loss of light makes the column appear self-lmminous.

A total-reflexion prism is sometimes used insteal of a mirror in order to reflect light, say at right angles. In that

Fig. 148. case (Fig. 148), the face $A B$ must lie at an angle of 45°; and in any case, the faces AC and CB , must be so cut that the light shall enter and leave them directly, without any inclination ; else there will be refraction, and different Colours will be produced, as in the prism. In dissecting microscopes, a total-reflexion prism is sometimes used to senul a horizontal

Fig. 14!. beam of light vertically downwards.

In a reversing prism light is refracted on entering, then
 hut on lowking thromgh suld a prism at an

Fig. 150. oljert Als, we sere it mside down. Figure 1.49 explains this.

Plane Mirrors.-If a parallal leam of light, descending vertically, wommer a plane mirror at 45°, it will be refleeterd horizontally, as in Fig. Ifo. 'Ihis cx, hains the use of mirmens aljusted outside windows in narrow passages, to reflect into the apartment the narrow strip of sky light available.

A mirror at 45°, with a central aperture, is sometimes inserted in the hody of a microscope, so as to send light from a lamp, plaed to one side, vertically downards, and thus to illuminate the object. The cavities of the body may sometimes be illuminated in the same way (endoscopes). The eye looks throngh the central aperture in the inelined mirror.

In Fig. 151, AB is the plane substage mirror of a microscope: the light which reaches any given point P of the oljeet, from an open sky, is the same as if the mirror had been an aperture through which an open sky, below the mirror ΛB, illominated the point P. The light which reaches P is limited by the cone APB . As we turn the mirror this cone diminishes or inereases; but if we keep the cone constant by restrieting the apparent visible area of the mirror by means of a

Fig. 151.

Fig. 15 ? diaphragm, it loes not matter at what angle the plane mirror stands. If, on the other hand, the available light be itself limited, as by a distant window, CD, the eone of rays which reaches P is narrower, and any one such point as P is only illuminated by a portion of the plane mirror. If the pint P had itself been the source of light, it is only that same limited area of the mirror which would have reflected light out through the window CD. The figure shows how limited the portion of the sky is whose light is tumed to aceonnt in illmminating the point P, by means of a plane mirror, when the daylight has to eome in throngh a window.

When light from a point O strikes a plane mirror surface, it is reflectech so that after reflexion it seems in
diverge fion at point I behind the mirom, the same distance behat the mirmor that O is in fromt of it (romatate F"ig. 5os. If we trace out a few bays fom on and draw the comesponding reflented ratys, with the angle of reflexime egtual low each to the correspomines angle of incidence, we fint that the reflected mas will all, on being contimed backwade, cerss we anothor at

Fig. 15\%. the $\mathrm{I}^{\text {wint }} 1$: and I is the virtual image of the point O. The worl "vimual" implies that the reflected rays do not actually come from 1, but that their course is, after reflexion, the same "s if iley had come fiom I.

When the source of lisht is an extended object, light radiates from every point of it ; and as a virtmal image is formed for every point of it, we lave a virtual image protuced of the object itself.

Let AB (Fis. 10t) bo such an ohject, and let BD be a plane reflecting surface. The observer's cye is at F. Rays from A, rellected at E , enter the observer's cye at F :

Fig. 154. but then they seem to the observer to hare come from Λ^{\prime}. So for every point in A B. Let $A B$ le a cliff and BD be smootlo water ; then the cliff $A B$ is refleeted upside down in the water. Agrin, let AB (Fig. 155) be a cloud, and CD be smooth water as before: the observer at F , lonking at the water, sces the image of elouls inverted in form, and at an apparent depth below the surface

Fis. 15\%.

Fig. 155. the clouds above it. If a person look at himself in a mirror opposite the upper part of his hody he can sce the whole of his own figne; for if $A B$ (Fig. 1:5) represent his own figure, the rays from his feet 13 are retlected by the mirror and appear to comm from 13'. A person loes not see his own face in a single mirror as other persons see it: What he sees as the
right side of his own inage other pernle see as his left sicle. Ins oreler to see himself is others see him, lemmst mse two minrom. If oute person look at another in a mittor,

Firg. 157. anm not divestly, il the jerson lookerl at look at the image of the observer in the minor, it will seem to him that the observer's image is looking liovetly at him. In nos ease can one prson look at another in it minor without the mirrors being in is position wherein the jersin ohservel conhl in turn look at the observer in the minor : object and observer are nlways interchangeable, as in fig. 157, A sees ll as il at B^{\prime} : B sees A as if at A^{\prime}.

A transparent mirror, at 45°, is sometimes used in scenic illusions: a brightly illuminated object, out of sight of the audience, is reflected in tho glass and aprears as if it were on the stage.

Fig. 15s.

In the chemical microscope the under surface of the object is looked at, and the rays from it are twice reflected by a total-reflexion prism so that they assume a direction more convenient for the observer (Fig. 158).

If a small aperture be marle in a mirror, which mirror makes rays from O appear, after.

Fig. 159. reflexion, as if they lat come from O^{\prime}, a piece of printed paper or any other object may be brought up to the same point O^{\prime}; and then the reflected image of O and the actual object at O^{\prime} will, on our looking throngh the small aperture, seem to coincide; for the one seems as if it were at O^{\prime}, while the other really is there.

In Lionel Beale's camera lucida the mirror is a piece of tinted glass; the object O is the virtual image produced by a microscope held horizontal : rays emerging are reflected upwards as if from O^{\prime}; and at O^{\prime} is a sheet of drawing paper. The eye looking vertically downwards sees the image as if at O^{\prime}; it also sees the drawing paper at O^{\prime}; and with a pencil the ontlines of the object may be traced upon the paper. The object should be brichtly illuminated, and the paper not too bricrlat.

In Soemmering's camera lucida a similar purpose is
served by a minute mirror, smaller than the purit of the cye: the centre of the prupil sees the reflected image, its rim sees the Paper, both at O^{\prime}.

In other forms of camera lucida the reflecting mirror-surface is that of a total-reflexion prism ; and if in such a prism the light have to mulergo two reflexions, there is no inversion of the image. In Wollaston's there is a two-rellexion prism, and half the pulil sees the rellected inage, while the other hald sees the paper and pencil direetly.

The image of an olject in a plane mirtor can never be Irighter than the object itself.

Rays reflected by one mirror may be re-reflected by another' ; and this may, if the mirrors be snitably arranged, be repeated so that multiple images are formed. We sce this when two mirrors face one another at opposite sides of a room: the room seems to lengthen into a long vista.

If we look along a groove made up with two slips of mirror, we find that there is a series of multiple images of any object situated within the groove ; and these images are symmetrically disposed in a circle, round a centre which coincides with the botton of the groove. If the angle of the groove be an aliquot part of 360°, say 60° or 45°, the images are symmetrically arranged round this centre, and successive gronps of images coincide with one another. This is applied in the kaleidoscope.

When a milror is rotated through a given Angle, the reflected beam of light from an olject is whirled through twice that angle: and to the cye at a fixed point the virtual image behind the mirror secus to travel across the mirror.

A spot of light looked at in a rapidly-rotating mirror has its image spread out into a band ; for the successive positions in which the image is apprently seen are blended into one continuous impression by the "persistence of images" in the retina, which persistence cndures for about one-sixth of a second.

Concave Mirrors.-If a mirror be spherical and concave, a flat wave-front, travelling towards it as if from an indefinitely distant source, is made to converge,
"proximately, upon n print callerl the principal focus of the mirror. After passing throngh this

Fig. 1tio. point, the wave-lront oferes ont, and the rays diverge as if they had originated in the point 1 , half-way between the mirros and its centre of curvature (! The point F^{*} is therefore an image of the very distant source of light; and it is a Real Image, becruse the lays really do pass through F.

In order, however, that they shonld do this exactly, so that the focus F is truly a mere point, the reflecting minror should he not spherical lut parabolic, as in Fig. 54.

In microscopic work a ring-shaped parabolic mirror is sometimes used, suspended above the opaque object to be illuminated, and a parallel beam of light

Fig. 161. is sent vertically upwards. In other cases a paraboloid of glass is used, and sends rays to its focus by total reflexion: the glass is hollowed out at its summit, to admit the object to be illumimated.

If the source of light come nearer the mirror, that is, if it be at any definite distance beyond C, the Real Image is nearer the point C; when the source is near C, the real image is very near C ; when it is at C , the real image is also at C, that is, the light is

Fig. 162. reflected by the mirror back to its source; when the source comes between C and F , the real image is beyond C , farther away from the mirror: when the source is at the principal focus F, the reflected wavefront is (approximately) plane, and the image is infinitely distant. When the source comes between the principal focus F and the mirror, the light diverges after reflexion us if it had come from a Virtual Image behind the mirror.

All this information is summarised in the formula
$1 / d+1, \prime^{\prime}=2 r$, where d is the Iistance of the sontere of light from the concome mirror, d^{\prime} is the distince of the intares, and r is the ratius of chrvature of the mintor.

Lentmples. - (1) Let the concave mirror have it radins of chrvature equal to 10 em. : let the object be at a distance of say 100 cm. ; where will the imare be? In the formula, $d=$ 100. and $r=10$: whence $\frac{1}{100}+\frac{1}{l^{\prime}}-\frac{2}{10}$: and on working this ont we find that $d=\begin{gathered}1,0 \\ 1 ; y^{\prime} \\ 5\end{gathered}$ of the mitwor.
(2) If the oligect be at 6 enu. From the mirror, where is the image ! Ifere $r-10, l=6 ; \frac{1}{6}+\frac{1}{w^{\prime}}=\frac{2}{10}$: whence $l^{\prime}=30$; and the image is at a listance of 30 cm., farther ont than the object.
(:3) If the object be at $t \mathrm{em}$, hiom the mirror, where is the image ? Here $r-10, l=1 ;{ }_{4}^{1}+\frac{1}{u^{\prime}}=\frac{10}{10}$: whence $l^{\prime}=-20$: that is to say, the image is at a mimus distance of 20 cm . ; it is 20 chn. behind the mirror, and is therefore a Virtual Image, as in Fig. 162.

Pairs of points at the respective distances d and d^{\prime}, as clefined by this formula, are called pairs of Conjugate Points.

Next suppose that the source (still considered as a point) is not at A in a line joining C, the centre of curvature, with the midpoint MI of the mirmor, lut is off the axis MA, at a point B, still at the same listance from C as A had been. For

Fig. 163. stuch a point F^{\prime} acts as a Principal Focus ; and il the point A^{\prime} be conjugate to A, B^{\prime} will be conjugate to P.

Similarly, if BA be a curved object whose centre of curvature is at C, every point in it will produce a corresponding real image of a curved form, also with its centre of curvature at C. The whole object $A B$ will therefore produce a small real and inverted image $A^{\prime} B^{\prime}$. Conversely, if $A^{\prime} B^{\prime}$ be the olject, the image will be at $A B$, also real and inverted, but this time Iarger than the oljject.

The relative Distances of the object and the image
from the surface of the mirror, along the axis M"(\%A, remain determined by the formula given above.
lf the object Al3 he straightened out, the inverted image is also stribhtened out, but not completely: it remains somewhat curved. If $\mathrm{A}^{\prime} \mathrm{l}^{\prime}$ be the ohject and be straightencel ont, the image ΛB is somewhat curver laekwarls. It is only in the central part of the image of a flat olject that the image is approximately flat ; hence the formule above apply to images and objects only when the breadth of the object or of the image is small, that is when the angle ACB^{\prime} or $\mathrm{A}^{\prime} \mathrm{CB}^{\prime}$ remains comparatively small.

Let the student bring his own face nearer and nearer to a concave mirror. At a distance he sees an inverted picture of his own faee. What he then sees is the little inverted and slightly distorted real image $A^{\prime} B^{\prime}$ of his own face $A B$, in space between the 1 nincipal focus F and the centre C , and therefore between himself and the mirror. As he approaches the mirror, the real image approaches him and loons larger and larger, hecause the angle under which it presents itself to his eye goes on increasing. As he comes still nearer, the real image is too near his eye for him to see it distinctly without strain ; and then it is so near his eye that he camot see it at all distinctly, though he sees that it is there. When his eye comes forward to C, the centre of curvature of the mirror, the image coincides with lis eye and of course he can see nothing. As his eye still moves forward, the image is formed (or rather would be formed but for the obstruction offered by his head) behind his head, at a distance increasing to infinity as he moves forward: and of course during this stage he sees nothing. When his eye has moved forward to the principal focus and beyond it, the image of his eye is now virtual and erect, and behind the mirror, so that the observer may now, if the image be not formed too near his eye, see the image of his own eye reflected in the mirror. As he still approaches the mirror, the image of his eye rapidly approaches him; and it may then come too near for him to see it distinctly.

The relative sizes of the image and object are always proportional to their respective distances from the centre of curvature of the mirror.

Concave mirrors are used for making parallel rays, or rays divergent from a lamp, converge upon a small spot, which is then brightly illuminated; or again, for making divergent rays parallel. When a
coneare mirror is used for illmmination, it is sommeness convenient to have a small hole at its centre, throngh which the eye may look at the objeed illmminated.

In the Laryngoscope, a concave mirror, attached to the forehead, concentrates light from a lamp unon a little plane mirror heh at an angle of abont 45° in the back of the mouth. This light is reflected downwards, and illuminates the laryux and wintpipe. These act as illuminated hodies, and send light in all directions, so far as they can; that which strikes the little phane mirror is reflected horizontally throngh the open mouth, and reaches the eye of the observer through a small hole in the coneare mirror. The virtual image of the larynx formed by the little plane minror is correct as regards right and left, but is inverted.

When a substage concave mirror is usel to illuminate an object mider the microscope, the effect is, under an open sky, precisely the same-the same cone of rays reaches any given point of the object-as when a plane mirror, with a rim of the seme siac, is used. Witl a limited source of light, however, such as a window, the state of matters is diflerent. In Fig. 164, P is a point of the object to be illmminated ; but let us assume that point to be itself a source of light, and see under what conditions light would pass from it to the window. If P be a source of light, light spreading from it mects the mirror and is made to converge so as to make at $\mathrm{l}^{\prime \prime}$ an image of the point P . Then this image radiates through DE so as, as it were, to illuminate a large area of the sky. Now reverse the course of the light. Light from a comparatively large area of the sky shines upon the point Γ^{\prime}; the cone of rays is contimed through P^{\prime}, is reffected by the mirror, and illuminates the point P. The thin dotted lines show the cone of skylight obtainable from a plane mirror with the sane rim. Hence the

Fig. 164. use of concave mirrors for producing lorighter illumination in microscopic work; but in daylight work they have this eflect only in rooms lit by windows; not under the open sky or close to a window fully open to the sky. On the other hand, smpose P^{\prime} in Fig. 164 is itself a source of liglit, say a lamp, the window being dark; the concave mirror will make an image of P^{\prime} at P ; that is, it will concentrate light upon the particle P so as to make it, as it were, sclf-luminous. A plane mirror, on the other land, would disperse the light coming from P^{\prime}, for it simply reflects the ever-widening wave-
 "! by steh at mimm, nsed with a lamp.

In many vases, for eximnining tho cavitics of the haman

 cutaring then is repaterlly reflected, and if they he eonical it is concentrated, so that. Whe finmas of the cavity is illumin. atcel. If there he an anorture in their walls, the part of the wall of the cavity which comesponds to that aperture is illuminated.

Convex Mirrors. - It the mmme leo convex, the

kig. 165. rays from any actual source are always made to diverge so that they travel, approximately, us if from it Virtual Image behind the mirro. If the wave be plane fronted and the rays paralle, they appear alter reflexion as il they come from the principal focus F , again hall-way hetween the mirror and the centre of curvature C. When this source of light is nearer than an infinite distance, the virtual image is always sontewhere between F and the

Fis. 160 . mirror', as in Fig. 166. The formula which states the relations is this time $1 / d+1 / l^{\prime}=-2 / r$.

Excomples.-(1) Let the radins of curvature be as hefore 10 cm ., and the distance of the olject 100 cm . ; then $d=100$:1ul $r=10$; by the formula, $\frac{1}{100}+\frac{1}{d^{\prime}}=-\frac{2}{10}$; whence $d^{\prime}=-\frac{1061}{21}$ $=-4 \frac{1}{2} \frac{1}{1}$; or the image is $4 \frac{10}{2} i \mathrm{~cm}$. bechind the mirror, aud is therefore virtual, as in Fig. 166.
(2) If the distance of the olject be 4 c.ln, we have $\frac{1}{4}+\frac{1}{d i}=-\frac{2}{10}$; whence $d=-\frac{40}{18}=-2 \frac{2}{2}$; and the imagre is $2 \frac{2}{3} \mathrm{~cm}$. behind the mirror, and is again virtual.

Convex mirrors form virtual images of extended objects, which are erect and always smaller than the object.

With a convex mirror a person always sees an erect small innage of himself.

On a smadl drop of mercury there is a mimute minemed picture of survomiling objects, which is a severe test for a mi m roseope.

The image of a straisht or plane ohject is curved in tho same semse as the convex surface itsell.

Frou the position and size of tho reflected images of a known oljoct, she has a seale, we maty calculate the radius of curvature of the mirror; and for the smoull reflecting suffices of the Liye, this is effected by means of the Ophthalmometer.

Refraction, -Let us put a perney in a hasin and stand so that the penny is just out of sight: if the bisin be then filled with water the penny comes into view. Fig 167 explains how this is: the rays from the penny are refiacter upon energing, and the coin is then

Fig. 16. visible to the eye at E. A stick appear's bent when one-laalf of it is immersed in water : any given point of it appects higher up in the water than it really is.

For this reason also we cunderestimate the depth of water; and if we look down at the table-eloth throngl a clear tumbler of water, the table-eloth seems to stand at a

Fis. 1ess. higher level muder the water. The sun is still visible when it has astronomieally "set" for some time: if S be the distant sun, really luelow the horizon, the rays from it are bent by the atmosphere so that they appear to come from S^{\prime}; and the same cause disturbs the apparent position of every star in the heavens, except one which might harien to be vertieally overluad at any given moment.

Light-waves of different frequencies, or Colours, are unequally refiangible.

We have already seen this in the production of a spectrum by a Prism.

If white light radiate from a particle S under water, on its emerging into the air the red is least refracted and the violet most so, while the intermediate colours of the spectrum are refracted to intermediate extents (Fig. 169).

Conversely, if light thavel from a particle in the air, on its contrrily water the waves corresponding to the different colours are again differcntly refracted, the red least so, the violet most so (Fig. 170). The red colour-waves are thins the least refrangible, the violet the most refrangible, among the metiations which give rise to the sensation of sight. This indicates that while in the Ether

Fig. 170. all the waves travel with the same speed, in our ordinary transparent substances the red waves travel most slowly, the violet most rapidly.

A stick immersed in water seems blue on one side, red on the other; and such colours are often beautifully scen in aquaria and rock-pools.

If white or mixed light, from a single point, were to enter a slab of glass of some thickness through an extremely minute aperture, it would be refracted, the violet most, the red least; and on emerging, all the rays would travel parallel to their original

Fig. 171. course. But they would have separated from one another to some extent during their passage through the glass: and if in Fig. 171 a screen were placed at $R V$, the spot of light received on it would not be white, but would form a Spectrum. If the source of light be an extended source, the extended spot of light formed on the screen will correspond to the overlapping of a number of spots such as that indicated in Fig. 171; and this overlapping would result in white light everywhere except at the edges of the beam, one side of which would present uncompensated red, the other uncom-
pensated violet. The margins of the spot on the screm will therefore be coloured.

If the sides of the slab loe not parallel, the light as a whole will not restme its orisinal direction, hat will mudergo "deviation"; and the diflerent colom's will he dillerently deviated, so that they will be "dispersed" from one another: and a screcn, at a sulficiently great distance, will recrise, insteal of a colomerel epot, a coloured hand of light, for

Fis. 1ie. the red ind the violet will, hefore reaching the screen,

Fig. 173. have diverged or been dispersed materially from one anotleer.

This is applied in the Prism, a rod of glass or 'fuartz, of triangular section, msnally equilateral or right-angled (Fig. 173).

If a beam of white light be allowed to fall upon one face of the prism, the diflerent colon's are deviated and dis-

Fig. 174. persed as shown in Fig. $17 \pm$; and a screen suitably placed will receive the Spectrum produced.

If we confine our attention to one colour at a time, we find that the rays from a source S may come very

Fig. 175. nearly to a focus and form a Real Image at a point S^{\prime}; that this occurs When the angle of emergence, i^{\prime}, for the particular colour, is equal to the angle of incidence, i; and that this only occurs when the Angle of Deviation is a minimum. That is to say, il we rotate the prism back-and-fore round its own axis, we fiml that there is a particular position of the prism in which the point S^{\prime} is higher up in the figure than in any other: and that the image of S formed at S^{\prime} is then the sharpest possible. It is not possible, therefore, to have all parts of the spectrum sharply in focus at the same time: this position of

Minimum Deviation must be fonnd for each colour in succession, hy turning the jrism.

When we have found this position for the pism, we may then measire the angle of incidence, i, of the bean of light unon the prism, Fig. 175; we shond already know the angle A of the prism; and then we are in a position to find the Refractive Index β of the glass of the pism, for the partieular kind of light which is then under onservation, by means of the formula $\beta=\sin i \div \sin \frac{1}{2}$. If the angle of the prism be 60°, this becomes $\beta=2 \sin i$; if 45°, it is $\beta=\sin i \div 0.72 \%^{\circ}$.
'Tho Index of Refraction may also be found hy measuring the angle of iucidence at which total reflexion begins to ocenr ; for then β is erpral to the sine of that angle.

Sometimes a hollow prism is used, of glass, filled with bisulphide of earbon. When the prism is, for any colour, in the position of minimum deviation, the whole of the refraction for that eolonr is the to the bisulphide, none to the glass itself: for were it not for the bisulphide, the rays would eurerge parallel to their original course, provided that the walls of the hollow prism were themselves of parallel-faced glass.

The source S should be made as narrow as possible, so that there may be as little overlapping as possible in the resultant Spectrum, and that each coluur may accordingly be as pure as possible. This might be effected by using, as the source of light, a straight wire heated to incandescence by an electric current. More usually it is effected by a "collimating" arrangement, Fig. 176. A is a screen in which there is a narrow slit, widened out in the figure for the sike of clearness ; behind this there is a lamp S . The lens L catches some of the rays which traverse the slit A; and if the slit be at the focus of the lens, the lens will make those rays parallel: such a lens is said to be a collimating lens, or a collimator. The waves

Fig. 176. are then plane fronted on their way towards the prism. After emergence from the prism, the rays are received in a kind of opera glass or telescope by which they are, for each colour successively, brought to a focus on the retina of the eye. The eye then
receives, for each colonr, an image of the narrow slit. This combination is a Spectroscope ; mul in the jath of the rays between the collimating lens L and the prism we may insert solutions, cte., whose absorption-spectra we wish to study. Whren we wish to stuly the emissionspectra of diflerent Hlames, we put these at. S.

In most spectroseopes there are several prisms; by this device the total amonnt of deviation and dispersion is increased and the spectrom is lengthened out. In some cases the number

Fig. 1is. of prisms is halved: if for instance we use a halfprism with its face 1 ? silvered, the refracterl rays are turned back when they reach the silvered

Fig. 1it. face, and come out at the sane face by which they entered, dispersed to exactly thic same extent as if they had traversed the entire prism. Some very convenient forms of spectroscope are made on this principle.

In almost every table spectroscope there will be fomm a third tube, a "scale tube," with a lamp. This tube bears a graduated scale and a lens, the mutual distance of which can be adjusted so as to make the rays from the scale parallel.

Fig. 170. These rays are then reflected from the face of the prism into the telescope tube, and the image of the scale can be seen in the telescope, aloug with the spectrum itself.

To use a spectroscope: (1) focus the telescope on a very distant object, and thus adapt it for receiving parallel rays; put it in its place in the instrument ; (2) remove the prism and move the slit, or the collimator-lens, until the telescope, directed down the collimator-tube, ean show the slit distinctly ; the slit is then in the focus of the collimator-lens; (3) put the prism in place, and adjust it for minimum deviation; that is, turn it into a position in which the selected colour is in the middle of the field of view of the telescope with the tclescope as nearly as ${ }^{\prime}$ ossible in a straight line with the eollimator-tube : (4) turn the scale-tube until its light enters the telescope, and then adjust the scale and leus until the scale is distinctly
seen in the teleseope ; (5) ser that the virthal innases of the slit amd of the seale coincide, hy moving the eyc forn sille to
 and the speetroun ; if there be, carefully adjust the scale or its lens.

If we combine two prisms of the sthue glas athd the sime angle, as in Fig. 180, the two prisms torrether act like a slab of glass ; there is then no resultant deviation and no proper dispersion; a lean

Fig. 180. of light emerges colomed only at its. elges. If, however, we combinc a prisu of crown-glass tund one of flintglass, thourrh we may uljust the anertes of these so that there is no deviation, we find that there still is dispersion, and a spectrum is formed.

Suclı prisms are usually connected by Canada balsam, which has a refractive index intermediate between that of ilint and that of crown, and therefore minimises the loss of light by reflexion at the junction.

This result, dispersion without leviation, is rather curious. It depends on what is called the "Irrationality of Dispersion" ; which is, that in different transparent substances the Deviation and the Dispersion are independent of one another ; that is to say, the deviation of any given Colour depends on the refractive index for that colour, and the dispersion depends on the differences between the refractive indices for the successive colours. The refractive indices may on the whole be small in any particular sulstance, and yet the differences between them may be great, or vice rerst.t. Therefore to neutralise deviation is not necessarily to neutralise dispersion. But when we are able to neutralise deviation without neutralising dispersion we are able to make a convenient form of spectroscope in which there is a straight train of prisms, is 10 Fl .18. In this instrument, the Direct Vision Spectroscope, there is a chain of alternating crown and flint glass
prisms: the light is adnitted by a sit at A ; it comes throurh to the lems L : the eye looking throngh the lens sees a spectrum sitmated at the image of the slit: and the lens

Fig. 181. can be arjusted so as to bring each colour successively into focus, by focussing each successive local coloured imatre of the slit.

Such trains of prisms are cmployed in the spectroscopic eye-pieces of microscopes, which produce a short spectrum in which absomption-bands are identified with comprative case. Theso eye-pieces are ofter provided with a total-reflexion prism for rellecting, from one side, a comparison-spectrum in such a way as to ocemy hall the fiehd of view.

By properly shaped prisms of suitable material, we can obtain deviation without chromatic dispersion. If we take a flint-glass prism which will produce on a given screen a spectrum which is say 3 inches long between two definite colonrs; and a crown-glass prism Which will do the same thing: and if then we set these two prisms in the path of the beam of light so as to nentralise one another's chromatically dispersive effects, the incident beam of white light will come through recombined and white: but it will (therein differing from Fig. 180) have been deviated from its original direction. The second prism has neutralised the dispersive action of the first and has only partially, not completely, neutralised its deviating action. One prism may therefore be achromatised by another ; and the pair of prisms, acting together, form an Achromatic Prism, a prism which produces deviation without producing colour-dispersion, just as a mirror does.

Lenses

If we examine a collection of lenses, such as spectacleglasses, we find that some of them are thicker in the centre than at the edges, while some are thicker at the
whes than at the combe. Jet ns call these respuctively thin-edged and thick-edged Jenses.

If we thke ${ }^{11}$ p a thin-ctged lens, we see that we can moke it nei as a magnifying-glass, as for examj]e when we eximine the skin ol the lamo with it ; and that if we hold it nu between the Sun and a piece of white paper we can make it act, more or Joss efliciently, as a burning-glass, for it moduces a small imare of the sun on the paper if the preer be held at a snitable distance from it.

When a thin-edged lens is used as a magnifying-glass to cxamine the skin of the hand, an image of the skin is seen cnlargel in size; but, though we would certainly not expect this, that image seems to be farther away than the skin. The Eye has, when the magnified imarge is being lookerl at, to adjust itself as il it were looking at a more remote oljecet.

Thin-edged lenses differ from one another in respect of the distance at which they can produce an image of the Sun: and it will be found that the lenses which are on the whole flattest in form will produce such an image when they are held at the greatest distances from the paper; while those which tend most nearly towards a globular form will form such images at the shortest distances. Each thin-edged lens has therefore its own proper distance at which it will form such an image of the Sun (or more properly, of an indefinitely distant object) ; and this distance is called the Focal Distance of the thin-edged lens in

Fig. 18? question.

Thin-edged Lenses are convergent lenses; that is, they make rays of light converge ; they bend them towards the axis of the lens, towards the thicker part of the lens, just as a prism does towards its own thicker

Fig. 183. part (Fig. 182).

Thick-edged Lenses canse light to diverge from the
axis and are hence called divergent Lenses; but these also bend the light towards the thicker part of the lens, that is, in this case, towards the periphery (lig. 183).

These thick-edged lenses act as climinishing-glasses. If a landseape be looked at through such a lons, the landsuape is seen diminished ; lout the curious phenomenon is presented that, quite eontrary to the impression at first received, the climinished picture or image of the landscape seems to be much nearer the eye than the objects in the landseape themselves are: in fact it is mostly some few inches only from the lens. When such a lens is held up to riew a landscape, and when the landscape itself and the diminished image are altemately looked at, with one cye, this will be felt to lue true; for the elfort which the Eye makes in order to see the diminished image clearly, is the same as that whieh it makes in order to see a near object clistinctly.

The ean obtain a climinished riew of the landscape eren with a thin-edged lens: but in that case it is an inverted one. Take any ordinary llin-erlged spectaclelens and hohl it at arm's length between the eye and the window ; an inverted image will be seen, small in size. Where is that image? It is as if there were a little transparent picture of the window and landscape, ling up in the air between the olsserver and the lens. In order to see this suspended image, we must be alble to get far enough behind the lens to look at that suspended little picture as if it were itself an ordinary object of rision at that place. It is best to use one eye only. It will not do to bring the eye too near it, or to prevent the formation of that image ly loringing the head too far forward ; in the former case we cannot see jt, luecause it is too near the eye; in the latter case the rays of light are freventer, ly the interposition of the head, from forming the image at all. The can easily satisfy ourselves that this real image, as it is called, is formed in the air between us and the lens, ly moving a bit of tissue-
paper or cisarette-paper back-and-fore between us and the lans. We shath tind some position in which the litule inverted picture is clearly defined on this improvised sereen: and then we find, on shiphing the paper sereen out of the way, that we must focus the eye, if we want to see the inmare clearly, in exactly the same way as we ham done when the paper was in its proper position. 'The natural tendency is, when we remove the priper, to do something of the mature of looking through the lens; but if we do this, we find that we do not see the image clearly. We must get our eye back to the same focuswing as when we looked at the paper itself. A little paper screen is thus a convenient means of finding out where the real image is ; and if it be wetted or oiled, all the better. But we may equally well find out where the real image is, by looking at the paper from the other side : and we shall have no tifficulty in finding that the real image of a nearer object is farther from the lens, that of a farther object somewhat nearer to the lens; and that the image of the Sun is nearest of all to the lens.

If we take a thick-edged lens, and try to finl ont loy the same means where it forms real images, we slall find that there is no such place: no image is formed on the screen at any distance on either side of the lens. It only seems to us, on looking through the lens, as if the image were at a certain distance on the other side of the lens.

A Real Image, when formed, is formed at a real and actual crossing-point of rays. Rays from any given point of the object looked at, as they diverge from that point, meet the thin-edged lens: the lens makes them converge, so that they sooner or later cross one another, the front of the wave from the point in question being then reduced to the smallest possible dimensions. But once they are through the crossing-point, they diverge as if they lad originated in that point: and our eye sees the
corresponding imase on picture at the phace where thes crossing-points oertr. A thick-edged lens, on the contrary, makes rays divare: and if they are alrealy diverging from any one puint in an given oljget, it makes then diverge more sharply, ws if they land come fiom a comesponling point in a nearer object; and thus they firm an image which is not real, for it does not correspond to any real crossing-point of rays, hat is imaginary or virtual.

Fiull treatment of the sulyect of lenses leats to somewhat complicated formulæ, in which we have to consider among other things the thickness of the lens. But let us, in the first phace, set this thickness out of view ; that is, let ns imagine onr lenses to lee reduced to no appreciable thickness, to mere films. Frurther, let us take note that there is a convention or agreement among physicists, that in speaking about lenses, they will assume the source of light to be somewhere to the right, so that its listance from the lens is Positive (distance to the left being reckoned as negative). It will make matters plainer if we adhere to this convention, at any rate in the first place.

Let us take a convergent lens whieh makes an imarse of the Sim at 30 cm . distance; that is, one which has a Focal Distance or Focal Length of 30 cm. We denote the Focal Length by the symbol f. Now draw a base-line, the Optic Axis, a line which passes right through the mid!le of the lens, at right angles to the lens. Then we draw a vertical dutted line to inticate the position of our intally-thin convergent lens: and along the axial line we measure off a number of distances, each equal to f, the Fucal Length of the lens. Thus the point A (Fig. 18t) is at a distance $+2 f$ from the lens, and the point B at a distance $-2 f$.

Now let us assume a wave-front, travelling in the line of the axis AB , to lue converging towards any
point O, saty at it distance from the lens equal to $-f$. It does not mather how it has been produced: we may, if

Fig. 1S5. we please, assunc that another convergent lens has given it its convergence. 'I'he lens will make it converge upon and pass through a point 1R, also upon the axis, at a listance $-\frac{1}{2}$, or $\frac{1}{2} f$ to the left; in this case 15 cm . to the left; and a screen at 15 cm . to the left will show a real image of ().

Next increase the distance between the lens and the point upon which the wave is converging : let this distance be say $-2 f=-60 \mathrm{~cm}$. then the rays are bent so that they converge upon IR, where the distance between IR and the lens is $-\frac{2}{3} f,=20 \mathrm{~cm}$. to the left.

Fig. 186.

The farther O is carried away from the lens to the left, the more nearly does the corresponding point IR come up to the point F, situated at a distance f to the left of the lens; lout it never quite comes up to that point until the point O is at an infinte distance -greater, that is, than any assignable number of inches or of miles. When that is the case, the incident warefront is quite flat, and the rays are parallel. Fig. 187 illustrates this case. Parallel incident rays are

Fig. 187. brought to a Focus at F. The rass of the Sun may lee and are taken as practically parallel, the Sun itself being so distant: and if the sun be to the Right, its image is formed at F, to the Left. F is called the principal focus of the lens; and physicists say that a Convergent Lens has a Negative Focal Length, because its Principal Focus is to the left.

Opinthaimologists, on the other hand, speak of convergent lenses as having a positive focus, or a positive focal length.

In the next diagram, Fig. 188, the wave-front is a
divergent one: it comes from a print at a distance aluntr the axis which is greater thath $\because f$, but less than intinity. It is minde to converge upon and to thatvense a point farlher away from the lens than E is,

Fig. 1ss. but at it distance mamerically less than $2 f$ th the left. Whell, howerer, the souree of light is at a distance $+2 f$, the point of con-

Fig. 1s? vergence, the crossing-point of rays, is at a distance - of (Fig. 189).

Again, so long is the soturce O is at a distiance less than $2 f$ but more than f to the right, the nearer O is to the lens L, the farther towards the lelt is the point IR thrown ; mntil, when O is at a point at a distance f to the right, that is at a principal focus, IR has receled to an infinite dis-

Fig. 190. tance, and the lay's which lave traversed the lens L have been rendered parallel by it (Fig. 190).

As the source 0 comes still nearer to the lens L, we find that although the lens is convergent, it cannot altogether do away with the divergence of the rays from 0 ; it only sincceeds in rendering them less divergent than before ; and after refraction by the lens, the course of

Fig. 191. the rays is as if they lad come from a source more remote from the lens. Fiss. 191 and 192 illustrate this. In Fig. 1910 is at a distance say cupal to $\frac{9}{3} f$ from the lens, and the rays then travel tes if they had proceeded from a Virtnal Image IV at a distance equal to of from the lens; positive, to the right. In Fig. 192, O is at a distance $\frac{1}{2} f$, and in that case IV is at a distance equal to f. As O approaches the lens, therefore, the virtual image at

Fig. 192. IV rapidly gains upon it ; and in order to get the greatest possible distance between O and $I V$, the source O must
stand at a distance from the jens as nearly as possible apral to f, hat at the same time distinctly less than f.

It will be secen that this series of diagrams is symmetrical; that the first resembles the last in form, though it is reverserl in direction ; and so on. But the series of figures may also be usex to tell us what will occur if we give the source O a corresponding series of positions to the left of the lens 1 . If we put 0 in the position of IR, we always find that It occhpies the previons position of 0 : the Object and the correspmeling Real Image are interchangeable.

All this information, and a grood deal more, as to the relative positions of object and image along the axis, is contained within the formula $1 / d^{\prime}=1 / d+1 / f$, where a means the distance of the object at O from the lens, l^{\prime} the distance of the image, and f the focal length, all in inches, or all in cms. But in applying this formula to any numerical problem, we must not forget that in a Convergent Lens f has always a negative numerical value.

Numerical Examples.-(1) A convergent lens of 20 cm . focus $(f=-20)$; the object O at an indefinite distance $(d=+\infty)$: where is the image formed? $1 / d^{\prime}=1 / \infty-1 / 20=$ $0-1 / 20=-1 / 20$; therefore $l^{\prime}=-20 \mathrm{~cm}$. ; a Real Image, 20 cm . beyond the lens.
(2) The same lens with the objeet O at 6 metres $(l)=+600$ cm.) ; $1 / c^{\prime}=1 / 600-1 / 20=-29 / 600 ; \quad l^{\prime}=-600 / 29=-20 \cdot 669$ en. ; I is at 20.669 em . on the other side of the lens ; a Real Image.
(3) The same lens with the object at 40 cm . distance $(l=+40) ; 1 / l^{\prime}=1 / 40-1 / 20=-1 / 40 ; l^{\prime}=-10$; a Real Inage.
(1) The same lens, with the objeet at $12 \frac{1}{2} \mathrm{em}$. ($\left.l l=+12 \frac{1}{2}\right)$; $1 / l^{\prime}=1 / 12 \cdot 5-1 / 20=+15 / 500 ; \quad l^{\prime}=+500 / 15=+33 \frac{1}{3} \mathrm{cml}$; in this ease the Image is on the same side of the lens as the Object, and is virtual.
(5) The same lens, with light from the right converging on a point 10 em . to the left (i.e. $d=-10$) $;-1 / 10-1 / 20=-3 / 20$: $l^{\prime}=-\frac{20}{3}=-6 \frac{2}{3}$; the light is made to converge upon a point nearer to the lens.

Let us now turn to the other class of Lenses, the
thick-edged or divergent. Their lehaviom may le summarised in the same formula $1 / d^{\prime}=1 / d+1 / f$, in which f, the focal length, is now positive.

Numerical Examples.-(1) A divergent lens of 20 cm . focus $(f=+20)$; the object O is an andinite persitive distance (i.e. parallel light from the right; $d=+\infty$); where is the image? Ans. $1 / \mathrm{c}^{\prime}=1 / \infty+1 / 20=0+\frac{1}{2 \pi}=\frac{1}{2} ; \quad d^{\prime}=20 ; 20 \mathrm{~cm}$. to the right of the lens; a Virtual Image at the Principal Focus.
(2) The same lens with the object 0 at 6 metres $(d=+600$ cm1.): $1 / d^{\prime}=1 / 600+1 / 20=31 / 600 ; \quad \lambda^{\prime}=600 / 31=+19 \cdot 355 ;$ 19.355 cm . to the right of the lens ; again a virtual image, a little nearer than the pincipal focus.
(3) The same lens, with the object at 6 metres to the left; that is, with light from the right converging on a point 6 metres beyond the lens; $\quad l=-600 ;-1 / 600+1 / 20=29 / 600$; $d^{\prime}=+600 / 29=+20.669 \mathrm{~cm}$. The slightly convergent rays have been made to diverge as if from a point to the right.
(4) The same with the object in the same way at 20 cm . to the left: $1 / d^{\prime}=-\frac{1}{20}+\frac{1}{2 \pi}=0 ; \therefore d^{\prime}=\infty$; the convergent rays have been made parallel.
(5) The same, with the object in the same way at 16 cm . to the left; $l=-16 ; 1 / d^{\prime}=-\frac{1}{16}+\frac{1}{20}=-\frac{1}{16}+\frac{1}{20}=-\frac{1}{5 \pi} ; l^{\prime}=-80$; 80 cm . to the left : the convergent rays have been made to converge upon a more remote point.

In all this it is assumed, in accordance with the physicists' convention, that the source of light is to the right. Then a convergent lens has a negative focus (to the left) and a divergent one a positive (to the right). The practice of writers on Ophthalmology is, however, to consider the light as coming from the left; and then a convergent lens has a positive focus (to the right), and a dirergent a negative (to the left). Some writers on Optics, too, do the same thing ; and therefore the student has to be on his guard as to the sense in which terms are being used in any particular book or paper.

Closely connected with this is another divergence of modes of expression. The fraction I / f, which goes by the name of the power of a lens, is used by plysicists as the measure of the divergence produced by that lens.

Bat it is conveniont in many ciases to tabe $1 / f$ ins a nheasme of the convergence probuced by a lens. 'ther this would be positive in a convergent lens, negrative in a divergent lens. But if that be so, then a convergent lens humb be described ins having a positive focial length f, and a livergent lens a megative. 'lhis is the point of view from which ophthalmologists have conne to thein present convention as to nomenclature. 'J'hey have agreed (luternat. Ophthalm. Congress, 1875) to eonsiler their. standard lens as a convergent lens whose focal length is one metre. In such a lens the Convergent Power is $1 / f=1 \div 1$ metre $=1$, unily, one Dioptre, or 1 D. In a convergent lens whose foeal lengtlı is 5 cm . or 0.05 metre, the eonvergent power is $1 / f=(1 \div 0.05)=20 \mathrm{D}$. A metre is taken as leing practieally 40 inches; so that a convergent lens of 8 inches foeal length has a eonvergent power of $\left(1 \div \frac{5}{10}\right)=\frac{40}{8}=5 \mathrm{D}$.

Now it happens that when we eombine two lenses, say of focal lengths f and f^{\prime}, then (on the express assunuption that we continue to neglect the thickness of the lenses) the Power of the combination is the sum of the powers of the two (or more) lenses taken singly. If $1 / F$ be the power of a eombination of our two lenses, $1 / \mathrm{F}=1 / f+1 / f^{\prime}$. Suppose we want a combination whose power shall be $1 / \mathrm{E}$, while we have a lens of focal length f; we must find another lens whose focal length is f^{\prime} in orcler to make up the required combination.

It may be, with a couvergent leus, that f is too great and our lens not suffieiently convergent. In that ease we must combine a convergent lens with the insufficiently convergent one in order to bring about the desired result. Assume that we want to make parallel rays eonverge upon a point 30 em . beyond the lens, and that one of our lenses makes them eonverge upon a point 40 em . avay. Then $\mathrm{F}=30 ; f=40$; find f^{\prime}. From the equation $I / 30=1 / 40+1 / f^{\prime}$ we find $f^{\prime}=120$; and the focal length of the required additional eonvergent lens is 120 cm .

Asain, if our lens be too convergent, we must combine a divergent lons with it. Assume that we want to make parallel mys converye as before ($\mathrm{F}=30$), and that our lens brings paraltel mass to a focus at 20 cm . distance $(f=20)$; then we find from the equation that $f^{\prime}=-60$; and we need a divergent lens of 60 cm . focal lenstl. This diversent lens has the effect of throwing the image farther off.

The ophthalmolugists' mode of effecting these computations would be the following. The required convergent power or dioptry is $3!\mathrm{D}(=1 \div 0.3$ metre $)$; the first lens has a dioptry of $2 \frac{1}{2} \mathrm{D}(=1 \div 0 \cdot 4$ metre $)$; we need an additional dioptry of $\frac{5}{15} \mathrm{D}\left(=3 \frac{1}{3}-2 \frac{1}{2}\right)$; and the lens to be used must therefore be a convergent lens, and lave a Focal Length of $\frac{6}{5}$ metres, or 120 cm . In the latter case the leus lias a dioptry of $5 \mathrm{D}(=1 \div 0 \cdot 2)$: but we only need $3 \frac{1}{3} \mathrm{D}$; therefore we must reduce the dioptry by a lens of $-1 \frac{2}{3} \mathrm{D}$; that is, the lens to be employel is a divergent one, whose Focal Length is $-\frac{3}{5}$ metre, or -60 cm .

This is applicd in the following manner. The human eje when perfectly normal (emmetropic) and at absolute rest, as when one meditatively contemplates space, brings parallel rays, or rays from an infinite distanee, to a focus on the retina of the eye. Rays from nearer objects, under the same conditions, tend to be brought to a foeus at points behind the retina, so that when they do impinge upon the retina they have not yet come to a focus; and they therefore, under these conditions, produce no elear image. But the Eye las itself a certain power of "accommodation," that is of altering the curvature of the Crystalline Lens and making it more convex. This is equivalent to our having at command a series of convergent lenses of all foeal lengths from infinity down to the least distance of distinct vision. Take a young man of 20 years of age: he can usually see an object at 10 em . from his eye, but not if it be nearer ; the aceommodation has, as it were, supplied him with a lens which, in conjunction with the normal eye aecommodated for infinity (that is not accommodated at all), forms a combination able to bring the rays from the near object to focus upon the retina: the divergent
rays from the near oljonet, striking the accommodated eye, are then "quivalont to parallel rays striking the unaccommodated cye froman infmitelydistant ohijot: amb in the eye, hehind the lous, they take a conn'se the same als that which ray's from an intinitely distant ohjeet would have taken had the eye remained manconmodatel ; whenee the virthal ahtitional lens has an andustahle Convergent lower on Jioptry ranging all the way from 0 to 10 D . In short-sighted or myonic: cyes, the converence is maturally too rapind for the shape of the eyfe, and parallel rays cone to a fochs too soon, that is, in front of the retina. In such cases it will be found that there is a remote point of distinct vision, let us say at 50 cm . Rays fiom a point at 50 cm . distance are just able to come to focus unom the retina; rays from any farther point conne to a focus too soon ; so that the short-sightel Lye is itself practically "quivalent to a normal eye phus a virtual convergent lens of focal length 50 cm . or dioptry 2 D . In order to enable such an aye to see remote objects, it must be restored to the comdition of a normal eye. This is done by neutralising the virtual convergent lens by adding a divergent lens whose dioptry is -2 D ; whence the use of divergent lenses by short-sighted persons. Of conrse, questions as to whether it is expedient to attempt to effect this neutralisation completcly, and thus to throw work upon the ciliary muscle which it has not been accustomed to do, pertain to the domain of Ophthalmology and not to that of Physics. In long-sighted or hypermetropic persons, the eye is similarly equivalent to a normal eye pus a virtual divergent lens, so that the rays do not converge to a focus rapidly enough to suit the form of the eye; in that case the error must be corrected by the addition of a corresponding convergent lens. In the case of a long-sighted person, however, it will be noted that the error can to a great extent be eompensated by making use of the Accommodation of the eye itself; and a person with a tendency to this defect maturally does this unconsciously: it is only when he is approachines the limits of exhanstion of his accommodation, which itself diminishes with alvancing years, that he learns that he has been habitually using his accommodation so as to provide himself with a virtual lens, when he should have provided himself with an actual one. When a person is about 50 years of age, with a normal cye, he generally has about $2 \frac{1}{2} \mathrm{D}$ accommodation left ; that is, his least distance for distinct rision is about 40 cm. ; and if he wants to see objects at a less distance than this, he inust use convergent spectacle-glasses of say 2 D or $2 \frac{1}{2} \mathrm{D}$, so as to bring the combination of eye and lens up to a maximum convergent power of say $4{ }^{\circ} 5 \mathrm{D}$, which will cuable lim to see
whigets at a distance of 2'2 cm., or of 51) which wifl enahle hime to see them at a minimm distance of 20 cm . if he strain his accommolation to the ntmost.

Tlons we see that a paid of lenses may act like a single lens: ant we have seen what the formula in general use is, whereby the Focal Length of a pair of lenses maty be estimated. lint llis formula is only an approximate one, though used as above for practical purposes. It is innlied in its use that not only are the two lenses in contact, lat that neither of them has any thickness at all, so that both are incre refracting films, coincident in position. The exat formula is much more complicated than that given ; but it does not appear to lee necessary to troulbe the student with it.

Non-axial Object and Image Points.--All that has been said applies to rays coming from or converging towards a point in the Axis of the lens, and converging towards or apprently diverging from some other point also in the Axis of the lens. Next, as to points not on the axis, the elementary theory, which gives rough approximations merely, approximations only applicable when the oljects and images are of no great breaclth, assmmes that if we have two points, one axial and one non-axial, but botlı at equal axial distances LO and $L^{\prime} O^{\prime}$ from the lens, then their images are also at equal axial distances from the lens.

Fig. 193. Then of the two points $\mathrm{O}, \mathrm{O}^{\prime}$, the respective images are I , I^{\prime} : and if $O O^{\prime}$ be an ouject, the image of that object is I^{\prime}.

If we make this assumption we may say that in any lens the distance d of the object, the distance d^{\prime} of the intage, and the distance f of the principal focus, all measured to the right, are statel by precisely the same formulæ as those which we have already given to show the relations between these distances when the objects and images were axial points merely. And ly similar triangles, the linear sizes of the olject and innage

We in all cares proportional to thein respective dis－ tances from the lens，considered its a reflatines film merely，sis that the inmare maty in many cases be larget than the ohajoet，Fiorther，whenever the imatge and the object（real or virtual）are on opposito silles of the lens，the innise is inverted；while when they are ont the same side of the luns，it is erect．Ams am object is illuays interchangeable with its ima⿱宀女口 ，if the innage be a real image；so what the photographic camera ant the magic lantern or photographor＇s cnlargenent lantern are converse cases，the one making a smatl real inage of a lange and distant object， the other a large and distant real image of a small olject near at hand．It will be bome in mind that virtual images are never formed upon it screen mol ：ne only in be seen through the lens，while real images may be seen either with the aid of a screen or by the wn－ aided eye placed at a sufficient distance along the line of the rays．
＇Io illustrate the real images formed by a convergent lens， we may take a long－extension camera with a short－focus single symmetrical lens say of $5 \frac{1}{2}$ inches focus．For the horizon or very distant oljects the ground－glass screen must be $5 \frac{1}{2}$ inches from the centre of the lens：for objects at 100 yards it must be at $5 \cdot 508$ inches：for objects at 100 feet，at $5 \cdot 525$ inches ；for 20 fect，at $5 \cdot 6 \cdot 29$ inches ；for 15 feet，at $5 \cdot 67.3$ inches；for 10 feet，at $5 \cdot 764$ inches；for 8 feet， 5.834 inches； for 6 feet， $5 \cdot 956$ inches；for 5 feet， 6.055 inches；for 4 feet， 6×212 inches；for 3 feet， $6 \cdot 492$ inches；for 2 feet， $7 \cdot 185$ inches； for 1 foot， $10 \cdot 154$ inches；for 11 inches， 11 inches；for 10 inches， $12 \cdot 222$ inches；for 9 inches， $14 \cdot 141$ inches．

Thus in order to catch any purt of the real image of the landscape on the screen，we must place the screen in an appropriate position．Since we must put the screen in a diflerent position with respect to the lens for each ontward distance of objects in the landscape，we may comprehend that the real image of the whole landscape itself forms a curi－ ously distorted model of the landscape，invisible and sus－ pended in space behind the lens．In the instance just given， objects less than $5 \frac{1}{2}$ inches from the lens clo not form a part of the real image at all，but form a virtual image extending to
infinity in front of the lens; objects from 5 t to 11 inches in frome of the lens are represented by the real image extemding from an intinite distance behind the lens to 11 inches behinil it: whects from 11 inches to 10 feed in front of the lens form a real inatu from 11 inches to 5 dis inches behinu it ; objects from 10 feet to $\because 0$ feet, from $5 \cdot 63$ to 5029 inches ; onjects from 20 fert to 100 yards, from 5629 to 508 inches ; and all objects from 100 yarls to an infinite distance have their real image compressol within a space from 5508 to 5500 inches behime the eentre of the lens. The diflerence between the focal distance for an otject at a distance of 20 feet and that for one at an infinite distance is thas small, being with a 5 dench lens 0.129 inch, and with a $3 \frac{1}{2}$ inch lens only 0.052 inch. Hence instrument-makers construct small "fixed-focus" cameras, in which it is assumen that all oljects more thau 20 fieet distant may be failly in focus on the serem at one time; and ophthalmologists assume in practice that an object at a distance of 20 feet, or 6 metres, may lee eonsidered equivalent to one at an infinite distance.

When we put a screen in such a positions, Fig. 191, as to display the real image of any particular object, say one at 100 fert distance, sharply defined, the rays from more remote objects have already passed through their respective foci and come to diverge, while those from nearer oljects have not yet rached their focms. The result is that each point of a nearer or more remote object forms, instead of a point on the screen, a "circle of diffusion," and the whole image of such ohjects is blurred and appears ont of focns. The screen is too far forward for the nearcr objects, and too far back for the farther ones. This result is explained by Fig. 191. Hence only one transversely-ent sliee or seetion, or one plane of the landscape or object can be truly in focus at any one time: lut if the circle of diffusion whieh represents each object-point be not too wile, say not more

Fig. 194. than $\frac{1}{1 n \pi}$ ineh in diameter, the result may be sufficiently satisfactory, and the lens is then said to lave a certain "depth of focus," whereby it can form a satisfactory

Fig. 195. image of objects not situated exactly at the distance which gives the best definition on the screen.

Let us use, close in front of the lens, in order to limit its brearth, an opaque dise with a central aperture in it; such a dise is called a stop: then as is shown in Fig. 195, the circles of diffusion are sinaller, and therefore the definition of variously-
distant objects on the sereen is more neanly the same than it is in F"ig. 19.t. Hence the deflnition of a landscape by a lens with a stop in front of it is sharper for all distances leyond and withon the best-definition distane than it is when the lons is allowed a wide aperture; a lens when so stopped down therefore has its Depth of Focus increaserl ; anct this aprat from all yuestions as to Spherical Aboration, of which later. Which gives the most artistic result-sharp diagranmatio delintion all over the landscape, or the sharp definition of one object while the rest of the lanuseape is bhured, or an intermediate result nbtained by a molinn-sized stop-is a question of resthetios into which we need not enter.

When therefore we use a small stop, the angle under Which the rays reach the focus or sereen is diminished; and the same result follows if we use a long-focus lens. Hence a long-focus leus is said to have greater Depth ot Focus than a short-focus one of the same diameter ; anll generally, where an image real or virtual is formed by rays under a small angle of ineidence, the lens or combination of lenses which form that image has great depth of focus.

The assumption of Fig. 193, that imarres of ex-axial points are in the same plane as imacres of axial points, is not true when the objects are of appreciable aurgular breadth, as viewed from the lens. The image of a plane object, produced by a single lens, whether that image be real or virtual, is not plane, but is bowlshaped.

For example, in the convergent lens of Fig. 196, the object O is plane but the image is bowl-shaped. If therefore we try to receive this image on a screen, we find that

Fig. 190. if we put the screen at a, the peripherical parts of the picture are "in focus" while the central are not; and that if we put the screen at b, then, though the central part of the pieture is distinet, the marginal part is blurred and "out of focus." The reason of this is that the central part of the object is nearer to the refracting surfaces of the lens than the ends of it are, and consequently the image of the central part is further away than the image of the cxtreme

Fig. 197. portions. Similarly if the lens be a converging one, but the object lie within the focus, the virtual image
fommed is apain bowl-shapen, hat with its combesity this dine
 one, the virtatal imase is bowl-shaped with its conwexity towame the lens. Aecomengy the ritual image in a microscope is bowl-shaped with its convexity townds the eye.

It is pusible to a wat extent to moderate the curvature of the image by msing a lens more convergent than is necessary, amd putting in front of it a plano-roncave flint lens which tends to probluce an opposite comvature: and ly this means if fairly flat feld may he produced. This lengthens Lhe foens of tho convergent lens and prodnees a larger and Hatter imare, fiuther ofl'; and a lems so nsed is ealled an "amplifler." An amplifier may even be used in conjunction with a microscopneal olijective for the projection of large pictures on a scren. The eye-piece of a microseope may le used for the same purpose, that of porlacing a large real image. The virtual imate with which it deals must lie ontside its focus: and this may be ellected by raising the eyrpiece, within limits ; or by depressing the image formed by the olject-lens, as by separating the oliject-lens and the olyject. The real image then motneed on a sereen is, for photomicongraphieal proposes, hetter than that wheh would be produced by the oljective alone, in the absence of the eje-picce.

Thick Lenses.-In what precedes we have treated the lens as if it haw no thickness, and had been reducel to a thin film of no appreciable thickness ; and the Focal Distances and the respective Distances of the Ohject and of the Image have been treated as il they were distances from this ideal film. The next question is, Where is this. ideal film supposed to be placed in relation to the Lens? As might be expected, this will depend on the form of the lens: and it might be sairl that the film is placel across the axis at a particular point of the axis called the Optical Centre of the lens. This leals to the inquiry, what is that Optical Centre? --hat no better answer can he given than that it is the axial point of the ideal lens-film. This looks like arguing in a circle: but the student will see that if the ideal lens-film be itself an ideal merely, the optical centre must be equally imaginary: and he will not be surprised to leam that there is not in fact any such point in any single lens. On
the other hand it is conveniont, ly way of simplification, to ansume that there is a point on the axis which may lee treated as the contre of the lens. If there were such a point, all rays travelling towards it before rcaching the lens would appear to be travelling from it after traversing the lens: and the result would be as shown in. Fig. 1!98. The non-axial olject print

Fig. $1!18$. O^{\prime} and its imare I' world le comecterl ly a straight line passing through the Optical Centre (!: and the line ($)^{\prime} \mathrm{I}^{\prime}$, fronn a non-axial oljject point O^{\prime} to the corresponding imase-point l^{\prime}, through the optical centre, would lee a secondary axis.

If however we take a real lens, say a hiconvex one, and trace the rays, we find that the rays from O^{\prime} are not in the same straight line with those passing towards I'. More than that, the cases are very limited in which they can possibly even be parallel. There is, indeed only one ray from any given point O^{\prime} which can emerge

Fig. 199. parallel to its former course: this is a ray $O^{\prime} R$, whiclı meets the surface of the lens at such an angle that it is refracted along a course $R R^{\prime}$, which takes it to a point R^{\prime} where the surface of the lens is parallel to the surface at R; so that the ray $R^{\prime} I^{\prime}$ is parallel to $O^{\prime} R$. There is only one such ray from any given olject-pint O^{\prime}; but in its course RR^{\prime} this ray, in the case of a symmetrical biconvex lens, crosses the axis at the very midpoint of the lens. All such rays as RR', formed under similar conditions, come through the same point; and this point is then called the Optical Centre of such a lens. But it will be noticel that the axes of pencils of rays, before and after transmission respectively, do not pass through this point: the diagram shows that these honours are divided leetween two other points, which are called nodal points or principal points, I and $\lambda^{\prime \prime}$:
rays making for N before refraction aprear after ret fiaction as it they had come from N ', and the "distances" of image and onject respectively are properly thein respective distances not from the Optical Centre but from these nodal points N^{\prime} and N .

It is true flat in a biconfex lens, both N and N^{\prime} are inside the lens, and are not very firs from one another: and further, the thimner the lens the smaller will be their mutnal distance, until when the lens is extremely thin we may neglect their mutual distance, and then assume both N and N^{\prime} to coincide with the midpoint of the lens. If we assume this, we may deal with the midpuint of the lens as if it were a true Opilical C'entre, the midpoint of the ideal refracting film of no appreciable thickness. But where we have an appreciably thick lens to cleal with, or a lens of unsymmetrieal form, or a comlination of lenses, we see that a considerable inaccuracy is introduced ly imagining that there is any one point which combines the attributes of looth N and $\mathrm{N}^{\prime \prime}$.

Let us, for example, take a plano-convex lens. The ray $O^{\prime} \mathrm{R}$ is refiracted in to the course R'I' ; and it emerges as if it had erossed the axis at N^{\prime}. The point N is represented by the point R itself, the apex of the conrexity of the lens; and as the lens becomes thimer, N^{\prime} approaches N or R until it ultimately eoineides with it: so that it is said that R is the Optieal Centre of snel a lens, and distances are commonly measured from it ;

Fig. 200. whereas the distance of the image ought to be measured from N^{\prime}. Similarly, in a plano-concave lens the socalled Optieal Centre is at the midpoint of the eurved surface. If we take a convexo-concave

Fig. 201. lens (thin-edged) we find, as Fig. 201 shows us, that of the lays crossing the axis at N, that one which emerges parallel to its original conrse will appear to come from N^{\prime}; but the so-ealled Optieal Centre (defined as the point where a line joining the extremitics of two parallel radii erosses the axis) is at C, farther away from the lens even than N. Observe that in this case the ideal refracting film is outside the lens, at a
considerahn distance from it. All this points to the laci that the results of our hypothesis that the lens is of a merely negligible thickness are apmoximate merely: but solong as we deal with single lonses the apmoximation thas obtaincel may he suffoient, thongh it is less relose than is usmally sumposed. For examulle, let us sthprose a convexo-concave thin-alded lens, with lanlii of envature 12 and 9 cm. and an axitat thickness of 0.8 con. while the flass las an imex of refraction of $1 \cdot 5$; then parallet rays, paralle to the prinary axis and strikind the concave fine, come to a fooms at a distance 67.59 cm . leyomd the eron. vex face; if they strike the conver face they come to foous at a proint $64 \cdot 16 \mathrm{~cm}$. from the midpoint of the concave face ; and $\mathrm{N}^{\text {and }} \mathrm{N}^{\prime}$ are respectively at distances $1.47 \mathrm{aml} 1 \cdot 1 \mathrm{f}$ enn. outside the vertex of the concave face: whereas the ordinary formula, which nerfect the thickness of the lens, wonld repuesent this lens as a convergent lens of 72 enn, focal length. (See Fig. 20\%.)

We must therefore conchude that the so-called "optical centre" of a lens does not really comespond to any actually existing point, and is a mere convention, enalling us to make approximate statements and calculations. If we want to understand the action of any lens or system of lenses fully, we must trace out the position of the nodal or principal points N and N^{\prime}; and in addition to these we must find the position of the two focal points, or points to which the lens or system of lenses makes parallel axially directed rays converge, according as these rays come from one side or the other.

As will be seen from the numerieal example last given, these focal points are not necessarily equidistant from the lens itself; and they can only be equidistant from it when the leus itself is quite symmetrical in form.

We need not concern ourselves here with the circumstance that when the medium on both sides of the lens is not the same, there is a distinction to be drawn between the two principal points and the two nodal points. Principal points and nodal points are not the same mess the medium on both sides of the lens be the same, as it is with an ordinary lens in air.

Special Forms of Lenses.-There is a form of lenses which is sometimes required by the ophthalmologist, called planocylindric lenses. Suppose that a patient has the front of lis eyc "out of shape" so that it is like the side instead of the end of an egg. In such a case the eye is saill to be astigmatic.

In one meridian the eye will he too shaply or too litile conval : in a meridian at risht angles to this the ermo may be less or may be opposed, or there may be no error at all. Sippose that the eyo is too shandy enved in its vertieal meridan while its lonizontal enreature is nommal: then tho inage ol a point will be correctly formsed in a horizontal direction but will he blurred vertically, for the eye is practically short-sighted in that direction. The patient will in that ease see proints as short pertical lines, so that for example he ean see nothing distinctly with a mieroseope. Let us suppose that this vertical myopism corresponds to an error of 2 D ; il now we use a (liversent lens of $\because 1$), we may correet the vertical myopia, but we at the same time gratuitonsly introduce a horizontal hypermetropia, with the consequence that the patient now sces proints as short horizontal lines. What has to be done, then, is to grind a lens which shall have a power of 2 D in the vertical cirection but none at all in the horizontal. This is accomplished by entting a lens out of a eylineler of glass, by a section parallel to the axis. Such a lens looked at in one direction wond have a cross-section like that of a plano-convex lens; and at rierht angles to this it would present parallel lines. Sneln a lens would not aflect the horizontal focussing by the eye, while it would correct the vertieal.

In regard to all spectacle-lenses, however, there is a considerable body of opinion that it is not well to have a convex on plane surface next the eye; for the distortion of objects a little to one side is too great. Hence "periscopic" lenses are a grool deal used, in which the onter convexity is greater but in which the back of the lens is concave. As we shall see immediately, the three lenses shown in Fig. 202 might have the same focal lengtl and conrecting power, the factor $\left(1 / r^{\prime}-1 / r^{\prime}\right)$ being the same in all; hence for axial rays they would serve much the same purpose, though the last eanses the greatest amount of deviation of axial rays striking the onter part of the lens and con-

Fig. 202. seruently the least distinet vision axially; but the cye can be turmed more comfortably into different dircetions when the third or periscopic lens is used. The axis of the eye is then, in all directions, more nearly at right angles to the general surface of the lens, and there is not, for this reason, so much difference between the appearance of objects straight aliead and objects above or lelow or to one side or the other, when the eye is turned so as to look direetly at these.

The same periscopic principle is applicd in cylindrical lenses. Instead of say a plano-eylindrieal lens whose enved
surface has a radins of emvature of 30 con., a phano-cyluditeal lens wonld be taken whase matins of emrvature was saty 10 cm , and in the lack of this a groove wonld be gromed which had a raklius of curvature of 15 cm . The concavo-cylindric lems thus produced wonld have a aross-section like that of a romvexoconcane lons, lige e03: and its fucal length would he the same as that of the 30 cm. - radius phano-cylintrice lens; for ${ }^{1}+$ $\mathrm{H}_{1}^{\prime}=\frac{1}{3}$

Focal Length of a Lens.-The formula nsually given in order to find the focal length of at simple lents (neglecting the thickness) is $1 / f=(\beta-1)\left(1, r-1, r^{\prime}\right)$, where β is the refractive index of the glass of the lens when the refactive index of air is taken as maty ; r is the radius of curvatine of the right-hand surface; r^{\prime} is the radits of curvature of the left-hand surface ; f is the focal length.

In Fig. $203(a)$, let $r=12 \mathrm{~cm}$. , positive, to the right; $r^{\prime}=9$, also positive, to the right; $\beta=1.5$; whence $f=-72$; and the focal length is 72 cm . to the left, or the lens is a

Fig, 203. convergent one of 72 cm . foens. If rays come from the left, we may turn the whole diagram upside down, and thus restore our working convention that rays always come from the right. The result is shown in Fig. 203 (1). The value of t is now -9 , because the centre of curvature is to the left ; that of r^{\prime} is -12 ; the equation now gives us the same value for f, mamely -72 cm ; or 72 cm . to the left. Hence, so far as this formmla can show us, we might reverse a lens in its setting without affeeting the focussing. But this is not so. If the lens be 0.8 cm . in thickness, the focal point will, in the ease of Fig. $203(k)$, be not 72 cm . beyond the lens, but 67.59 cm . beyond it; while in the case of Fig. $203($ () it will be $64 \cdot 16 \mathrm{~cm}$. beyond it : and the Lens will only be reversible on condition that we make its nodal points exchange places. Then each Focal Point is situatel at a distance of 66.12 cm . from the corresponding nodal point; and the two Nodal Points are at a distance 0.31 cm . from one another, both outside the convex face of this lens. If we wish, for any reason, to swivel the lens romod, so as to reverse it, we must rotate it romed a point midway between N^{\top} and N^{\prime}, so as to make these points exchange places: and it is only in a perfectly symmetrical lens that this point, which we may perhaps call the swivelling centre, coincides with the so-called Optical Centre
of the lens. In the exanple erven, this swivelling eentre wond he at a distance along the asis equal to 1 '315 cma. in front of the vertex of the denver fare of the lens.

The anmoximate lens-formula above riven is appliable to all forms of Lensers, ill we take calle of ont posilive atme nemative sighs. Lint it is liat mone acemath to make an atual measurement of the E'ocal Distrate of it lens than it is to caleulate ont the focial length liy means of a formmata steh ats this, which negleets the thickness of the lons.

The distinction betwen the Focal Distance and the Focal Length of alens is, thougli the two terms are often used symonymously, that the Focal Length is the true distance between the nodal point and the prineipal focus, while the Focal Distance is the listance between the actual lens and the principal focus.

The phrase Focal Distance is also used to mean the distance between the object and the lens in the everyday une of the lens. The student must therefore be on his guarl, and must ascertain what is meant by the expressions focal lemerth or focal distance, where these occur.

It is casy to fink the focal distance of a convergent lens. 'Taking the rays of the sun as representing parallel rays of light, we may use our convergent lens alter the fashion of a burning glass to make a sharply delined image of the sum on a screen : and we then measure the distance between the lens and the sereen. If we do this with our lens of Fig. 203 , we find a focal distance of 67.59 cm . on one side and of $64 \cdot 16 \mathrm{~cm}$. on the other side of the lens. Again, we may focus a telescope nuon the moon or stars or mpon a very distant object, so as to put it in focus for parallel rays: and then we may put the lens we are examining in front of the telescope, and in front of the lens some delicate object, whose position in front of the lens we auljust until we find that we can see it distinetly throngh the telescope. Rays divergent from the object are then transmittel by the lens to the telescope in a parallel condition; and the object is at a clistance from the lens corresponding to the focal distance of the lens. The results obtainer by this method are the same as those obtained by the last. Or again, we may take advantage of the proposition that when the object
is at a distance mpal to twice the Fooml Length, the image is also at :un equal distance on the wher side of the lens: the image is therefore of the same size as the olject. Aceordingly we aljust the relative positions of an whect (say at masuring seall), the lens, and a sereen, wntil we find that the image on the sereen is of prexisely the same size as the object ; then the distance between the oljecet and the serecn is equal to fow times the focal length (ouns the small distance hotween the notal puints, which we neglect). In the instance of Fig, 20 \% ', this method woukl give as its result a focal length of $666^{\circ} 20$ ('m. The 'rue Focal Length, the distance between either nodal pint and the corresponding focul point, is in this case $66 \cdot 12 \mathrm{~cm}$; so that method (3) gives the eloser inproximation to the true focal length.

For symmetrical convergent lenses, in which the focal distance is the same on both sides of the lens, Bessel's method is very ingenious. Fit up a bright olject O and a screen I at a linown distance OI apart; move the lens gradually from 0 towards I until a shar'p magnified image of O is formed on I; then note the position of the lens, say at Λ. Next move the lens still nearel to I, until a point 1 B is reached at which a sharp diminishel image is formed on the sereen; note the lengll of the line $A B$. Then the focal length is $\left(\mathrm{OI}^{2}-\Lambda \mathrm{B}^{2}\right) \div 401$; and the quantities in this expression are easily measmrable.

Thic focal length of a divergent lens is not so easy to ascertain. Practically it is found by ascertaining to what extent it will weaken a stronger convergent lens. A convargent lens of known focal length f is taken: the lens to be tested is brought into contact with it ; the combination must still retain some convergent power, or if it does not, a stronger convergent lens must be used; the focal length F of the combination, considered as a single convergent lens, is found as above: it is then assumed that both lenses are mere films and are coincident in position; and this assumption enables us to apply the formula $1 / f+1 / f^{\prime}=1 / \mathrm{F}$, in which we know f and F and can aecordingly readily calculate out the value of $f^{\prime \prime}$, the focal length of the divergent lens. The value so obtained is generally only a very rough approximation to the true Focal Length $f^{\prime \prime}$: but it has a value of its own ; being an experimental result it enables us to state the effective weakening power, $1 / f^{\prime}$, of the lens when used in combination with a convergent lens, and in contact with it. On the other hand, it does not enable us to use the figure so obtained as a daturn of the value of f^{\prime} in problems involving the use of lenses not in contact with one another : and in order to work out calculations of this order we inust ascertain the curvatures of the divergent lens, its axial thickness, and the refractive
index of the glass of which it is compered, so that we may hemm its Notal Points and its true Focal Length hy means of thw mome complicated formula alremy alluded to, which take accome of the thickness of the lems.

Angle of a Lens.-I'here is a shont-hand way of noting the conse of mays in a lens which it may lee uscrful to explain, and which we have allealy usce at Figs. 196 and 197. Suppose we have a lens of known focal length, and an ulyeet at a known distance d: then, nerglecting the thickness of the lens, the diamran of the course of the latys would be, il the lens be a convergent one, as in Fig. 204 (u). JBut for many diagrammatic purpuses it is quite umecessary to put in all these lines: and it is olten quite enough, for such purposes, provided that we to know the respective distances d and d^{\prime} of oloject and image, to

Fig. 204. represent the action of the lens as in Fig. 204 (b), where the distances are simply drawn to sarale.

This shows that the pieture on a photographie plate has been taken under a certain angle: and if we look at a photograph with one eye under this same angle, putting the eye where the camera-lens liad originally stood, we view the photograph as the camera-lens han viewed the landscape, and we then see it in perspective relief, though with one eye only:

When we take into account that we have to do not witl a true optical centre, but with Nodal Points N and N^{\prime}, the diagrams become as in Fig. 205, where (i1) shows the effect of a convergent lens producing a real image, (b) that of a convergent lens 1mo- $^{\text {mos }}$ ducing a virtual image, and (c) that of a clivergent lens producing a virtual image.

Magnification by a Lens.-The term Magmification, or Magmifying Power of a Lens, seems somewhat ambighous. Let us say Fig. 205. that a given convergent lens has a magnifying power of 5 diameters. Then the Virtual Image is formed at a distance of say 10 inches when the Object looked at
through the lens is at a partientar distance from the eye: amb this distance will, in this case, he 2 inches. An oljegect at 2 inches from the eye is too nown to

Fig. 20t. be seen: and the lens emables it to be seen distinctly as if it were a larger object situated at the Least Distance of Distinet Vision. Fig. 206 shows that the near object O is simply rendereal visible as if at 1 , subtending (if we neglect the thickness of the lems) the original angle at the optical centre of the lens, without change; and the inage is larger than the olject in the ratio $10: 2$, or $5: 3$.

Crenerally, if d and d^{\prime} be the respective distances of the object and the image from the optical centre (or more accurately, from the corresponding notal points), the Magnitication $m=d^{\prime} / d$. If the image be nearer than the object, d^{\prime} ' is smaller than d, and the magnification is a fraction ; that is, there is a "diminishing" eflect.

The case shown in Fig. 206 is not easy to realise, since the combination of a lens plus the seeing eye is not the same in its action as a simple lens alone: but if the eye look partly through and partly over the edge of a thinedged lens held as close as possible to the eye, so that both the uloject and its image are viewed at the same time, it is easy to show that both the object and the image tend very nearly to cover the same field of view, and to differ only in distinctness, not in size. They therefore subtend the same angle at the Eye.

Where, however, the eye is not laid so close to the lens as this, the state of matters is different. In that case the object stands at a certain distance from the Eye, and subtends a certain angle at the eye: the image also stands or seems to stand at a certain distance from the eye, and sulbtends or seems to subtend a certain angle at the eye: the two Angles subtended are in most cases not the same, and hence there is a difference in the apparent size of the image and that of the object, as seen from the Eye. Fig. 207 shows how the result of

Fig. Z0t is motilied when the ege retmats to a distane fiom the kens. 'The olyget and the imatre subtend eymal angles at the has, but not at the eye: and the image appeats latrge than the ohject in the ratio of AB to Ele. This ratio of AB th EE will vary with

Fis : 207. every position of the eye and with every adjustment of distance leetween the object and the lens.

To take an extreme case, lit up a lens so as in form an image of a distant window on a parge of pinted mater: make that lens mow towards the pape thongh a very shme distance;
 the lens: the printed mather will appear extremely distant amd huge in size in comparison with the pinted characters themselves, for the virtual image of these is large and remote.

Hence we have two things to distinguish: Magnification as a measure of enlargement of the image formed at a standard distance (10 inches) from the eye; and Masnification or Amplification as a measure of the greater visual angle under whieh the image is seen through the lens (or system of lenses) employed. The former is of importance in the microscope; the latter in the telescope and opera-glass.

In the former sense, the Magnifieation modneed ly a convergent lens of 4 inches fouss is $3 \frac{1}{2}$ times ; for $m=r^{\prime} / l$: and when $d^{\prime}=10$ inches, $d=\frac{20}{7}$ in. ; so that $d^{\prime} l l=3 \frac{1}{2}$. But in the latter sense, the Aprarent Magnifieation depends on the relative positions of the object, the lens, and the eye: for example, if the oloject he at 3.9 inches from the lens, and the eye 32 inches on the other silc, the image secms 18 feet away, while the apment dianeter of the image is 29.7 times that of the olject.

The apparent Amplification is equal to the ratio between the tangent ol half the angle subtentel at the Eye by the image, and that of half the angle subtended at the cye by the object. When the lye practieally coinciles with the Lens, the amplification in this sense is unity only, for both angles are the same; but in that position the angle which the image subtends at the Eye is the greatest possible. There eertainly is a eontrary impression produced on the mind-an erroncous one, howeverthat the image is more highly magnified, in the sense of sulb-

Uonting : greater visual indele, when the oljoet-say a lowli-
 'I'lor anmon mblemed liy the vintual imase is in that catse really smabler than when the lens is used at close fuinerers ; and so is the imange on the retina; hot there is in the first place an ohsionsly greater angular amplification, as may le at ome sectn on comparing the printed page with its vintual inare, and in the next phace there is at greater anommi of comfort in using at lens moder such conditions, since the Aecommodation of the eye is not straned as it is when welook at an inare at the leasi possible distance of distinct rision. On the contrary the iname is then thrown back ank is very large, so that the effort which the leje las to make is much the same as that which it would have to put forth in reading a poster on a wall.

Combinations of Lenses.-When we have to deal with a combination of lenses instearl of with a sinefe lens, there is one guiding principle which laelpen throurh our calculations. 'This is, that we may' consider each lens separately and dispose of its action lefore gring on to the next. If we have an Olject in front of the first lens of a combination, that lens must necessanily form or tend to form an image somewhere ; ant lhis image may, accorting to circumstances, be real or virtual. But the rays, now diverofing from a real image or converging with the view of formang one, or diverging as if from a virtual image, are acted upon by the second lens, and this second lens makes or tends to make a second image of the original oljject. so on ; the last lens of the combination is homnd to make a Real or a Yirtual Inage somewhere along the line of lisht.

Take an opera-glass, closed or very slightly lengtlened at haphazark. We can sec nothing when we look througly it: this is lrecause we cannot see the image ; but the image exists, or tends to exist, either as a Real Image somewhere in space hetween the eye-piece and an infinite distance behind the epe, or else, if the tube be somewhat lengthened, as a Tirtual Imare inside the tube of the instrmment, but too near the eye for the ceye to be able to see it distinctly. As the tube is further lengthened, the image, virtual within the tube, shifts forward, away from the eye, until at length it reaches a position where the eye can conveniently inspect it without strain.

What is called focussing oi such a comlination as ath uprab-alass, a microscope, or a tulescope, implies shifting the lmase, which is always really or virtually formed sumewhere, into a position where the eye am comfortall! insered it ; and the focussing of the inatge on a screen, say in photographing a microscopical proparation, implies shifting the real image backwards or forwarde mitil it comes to coincide with the serven, or chse shifting the sereen until it comes to coincide with the iminge.

It is sometimes necessaly to produce an image of a determinate size on a scren. suppose we want a larger innge than we actually get shamply defined: we mist muve the screen to a greater distance, and then make the lens and the object apronch one another so as to thow the image farther off, and make its position comeide with that of the serect. Conversely, if we want a smaller image, we must separate the lens from the ohject. When a microscope is used for photo graphing, the larger the picture repuired the more closely numst the front lens and the object approach one another ; or in sume cases. as in Abbe's projection oculars, the more closely must the unermost lens and the last real image within the microscople tube approach one another, for a real inase ahways auts as if it were a real olject. When a lens of short focus is. used in a photographic camera in order to make a picture of it siven object and of in given size, it must come nearer the ohjeet than when a lents of longer focus is used. The temency to form larger inages of nearer and smaller inages of more remote portious of the object is thus exaggerated. In the photorraphy of surgical cases, where it is of importance that the photograph should represent the the form, the longest focus lens which is convenient should be used, the ohject being then phacel at a correspondingly great clistance from the camera.

Equivalent Lens. - Parallel riays, entering a combination of lenses, mostly emerge in a state of Convergence or of Divergence, according to the nature and arrangement of the lenses in the combination. They lave therefore been, on the whole, deviated to a certain extent; and the simple lens which would produce the same deviation is called the Equivalent Lens. Any conn-
bination of lenses is , so liar as regarels the Deviation prodmed by it, equivatent to such an equivalont single lens; hat it hats its nodal points in mont instances much farther apart than fley could pussibly be in a single lens.
'Tlie nodal points lave thas an improtance in a combination of Ienses far exceeding that which they can possess in a single lens: but the properties of the nodal points in a lens-combination in no way difler from those of the nodial points of a single lens.

In Fing. zos let the nodal pints of a convergent lens on combination of lenses be N and N^{\prime}, and the principal foci be F and F^{\prime}; and let O be an object point. Join

Fig. 20s. ON: the ray ON emerges from the lens parallel to ON, but directed as if from N^{\prime}; therefore draw N'I, parathel to ON. Again, draw a ray from 0 parallel to the axis, as far as the point M, in the plane cuting N^{\prime} : this ray goes to the prineipal focal point F : therefore join ME and woluce it until it cuts N'I in I ; I is the real image of the objeet-point 0 . The student may exercise himself in showing, on the sane lines, how a virtual image is producel il 0 (ic between N and F^{\prime}. The rays $\mathrm{N}^{\prime} \mathrm{I}$ and FI do not, in that ease, converge anel meet in I, but they diverge as if from a point behind (to the right of) N^{\prime}.

Again, with a divergent lens or combination, the corresponding diagran is as in lig. 209. Join ON ; continue the lay, but as if from N^{\prime}. Again draw ODI as betore: the emergent ray seems to come from l^{\prime}, along FM. FM and the ray through N^{\prime} travel us if they had intersected at I; I is the virtual image of the olject-point O .

Fig. 204.

The distinction between the fictitious Optical C'entre of a lens and the two Nodal Points of a lens disappears when the light does not cmerge at the back of the lens. There is then only one refracting surface. Let the glass lens (Fig. 210) have a front surface \bar{F} of spherical form, of which the centre is C ; and let the back B be also spherical, with the same centre. Let the object O be spherically bowl-shaped, also with the same centre C. Then if the glass be sufficiently refractive, or the lens FB be long enough, the
image I will be formerl within the lens: anl it will ho opherirally bow-shaperl, with the same centre O . This centre C is a true optical centre ; and it is also said that in such a case there is only one nodal point, which is also the point C. If the lens. FB he of the right lengeth, I will coincile with b , and the image of the object O will be formed on the back 1 b, which may he blackenen.

In works on Plysiology, the student will find that the Eye is for simplicity's sake reduced to an ideal eye of this kind, which is formet of water standing in air, and whose chrvatures are not the same as those of the actual eye: and then the trine optical centre or single nodal point of such an ideal eye is called the "Nolal Point" of the actual eye. Bint the actual eye, as a comhination of lenses, has two nodal points, near nen another within the crystalline lens; and the single so-callen Nolal Point of the ideal eye lies between these. The use of this derice enables dingrams to be simplified without too much inaceuracy.

In myopic eyes this point is, relatively to the bulb, too far forward ; it is therefore farther from the retina or back of the cye; and images formed on the retina are therefore larger than they are in the case of normal-sighted persons.

Centring. - In all combinations of lenses it is of importance that the component lenses should be well centred; that is, that their axes shonld all lie in one and the same straight line. If this be not attenderl to, the resultant image is thrown off to one side, so that it rotates when the lenses which are in fault are rotated; and it lies at an angle to the gencral axis of the apparatus, so that only one strip of it can be brought to focus at any one time.

This consideration is of great importance in the adjustment of spectacles: for if the optic axes of the lenses do not coincide with the optie axes of the eyes, there is great strain put mon the eyes, which suffer. Again in the use of binocular telescopes, opera-glasses, mieroseopes, and the like, the distance hetween the two ocnlars should always be adjustable, so that it may be made to agree with the distance between the centres of the prupils of the two eycs. The different parts of the eye seen to be never thoroughly woll centred on the optic axis.

Spherical Aberration is a fault inherent in lenses and combinations of lenses ground in the usual way with
spherical surfaces. Its mature is illusbuted by lig. 211. 'rloe rays striking the axial piot of the lens come to at foress at F ; the desideratum

Fig. 211. would be that those striking the peripheral bart of the lens should come to a focus at the same point F. This would imply that the periphoral parts of the lens should present a suitable slope for this propose ; but no such slope is obtainable with spherical surfaces. The result is that the rays striking the peripheral part are always, in a biconvex leus, refracted too much, and come to a foous at F^{\prime}. Hence if we cover up the peripheral part of the lens, the focus is at F, whereas if we cover up the central part of the lens, it is at F^{\prime}. The distance FF^{\prime} is called the longitudinal spherical aberration. If the screen be brought up to the position F in which the axial rays are in focus, the peripheral rays, having alrealy met, are already divergent, and the result is that the image of a point is spread out into a dise, whose diameter is GH . The diameter CH is called the lateral spherical aberration.

The most obvious means of checking Spherical Aberration wouk be to limit the diameter of the lens by means of a stop; but this would have the effect of diminishing the amount of light available.

The theoretical way to get rid of Spherical Aberration, in a lens of the required apertnre, would be to employ not spherical but ellipsoidal or hyperboloidal surfaces; but this remety camnot be employed in praetice. An ellipsoidal or hyperboloidal surface may refract light coming from a point at a definite distance in one medinm so as to bring the rays to a point-foens within the sceond medium ; and this correction is present in the human Eye. A lens gradually inceasing in refractive index from its surface to its interior might aroin this fault: such a lens we actually find in the crystalline lens of the human Eye. What is done in the practice of kensmakers is to use spherical surfaces and then to correct these. In exceptional eases the surfaces themselves are alteren slightly
by maferl polishing, st an to vary the form of their curvature, this beine dom by al systematio promes of thial and ertor. In ondinary apratis, hower, the use of pronery phaced diaphragms is of alvantage. Sinch Dialumpus allow rent ral ays to travelse the lens centrally: hat the ouly mits which eam rach the margin of the lens are rays from marginat parts of the ohject ; stuch rays, falling (Fig. 212) at a greater anghe of intid. one umen the peripheral parts of the lens, hate their fochs thrown well forward; and thus the whole of the rays which eall traverse the lens all come to focis in the neighbomhoow of F , the foens for axial or central

Fis. 213. rays. The iris acts as an adjustable diaphragm in the luman eye, ant not only regulates the amomet of light which is adnitter, but also tends to sulahe sphericul aher'ation. Again, the form of lenses may be so devisel, oren with spherical suffaces, as partially to obviate or avoil this fanlt. If we have an oljeet at a distance d, the best form of the lens to be employed in order to make a clear image of that olgect will depemI mon that distance d. The limits of this are, for example, that when the lens is of refractive index 11 (crown-glass) and the object is at infinity, the radii of the biconvex lens, nearer and farther from the objeet respectively, must be as $1: 6$. As the distance diminishes the ratio changes, mutil when the object is at the principal focus the ratio of the rallii shonlt be 6:1. Snch lenses are ealled Crossed Lenses.

Again, in combinations of lenses salled Aplanatic com. limations another prineiple is utilised. In a thick-edgen lens the spherical aberration is opposel to that of a thin-edgel one; the point F lics behind F^{\prime}. If we combine a thin-edged lens with a weaker thick-edged one, there is a tenlency to compensation of the errors the to caeh lens singly; and by suitable choice of the refractive indices and curvatures of the two lenses, the correction may be made very nearly perfeet. Lastly, it is fomm that there is less spherical aberration when we nse insteal of a single biconvex lens a series of weaker lonses: for' in that ease the marginal rays are gradually bronght more nearly into line with the axial rays, and are on the whole more acted npon ly eentral farts of the lenses ; and thas the aggregate diflerences of slope hetwern the refracting surfaces which deal with marginal and those which deal with axial rays are on the whole Jiminisherl.

Combinations of lenses in which the Spherical Aberration in got rid of, by aljusting the emrvatures amb
refindive indies of the diflerent lenses whirlo make up the combination, are aid to lo aplanatic.

Combination in which tha spherical abernation is incompletcly got rid of are said to be

Fig ell3. under-corrected.

Combenations in which the conrection for spherical abberration is to ereat, so that the peripheral rays come to a fowns beyond the axial, as in Fig. 2l:, are suil to be over-corrected.

It is not possible to make any combination of spherical. surfaced lenses which shall be perfectly aphatio muler all eircomstances. If such a combination be aphanatio for paralle rays, and thus bring all parallel rays to the same focus, it will not be perfectly aplanatic for convergent or divergent rays. if it be aplanatic for rays coming from a point in on near the axis ant a little beyond the focus, it will be somewhat sphericallyaberrant for points beyond that: and again, as the object approaches the lens-combination, this acts first more and more deciledly as an "over-correctel" combination, then less and less so, then as an aplanatic, and lastly as an under-correcterl combination. The two points, in reference to which the combination acts aplanatically, are called the "aplanatic foci."

Botll over-correction and under-correction act detrimentally on the performance of a lens. To begin with under-correction, or residual ordinary "positive" Splerical Aberration. The icleal to be souglit after is, naturally, that all rays from a point in the object should come together at a single point

Fin. 214. in the real image, and diverge therefrom as from a single material bright point. But if there le Spherical Aberration (non-correctel or under-corrected), the result is that shown, in an exaggerated form, in Fig. 214.

The image is most distinctly seen at I, but is shrouled by a laze of light from the peripheral parts of the lens, which light has atrealy come to a focus and diverged. At I^{\prime}, farther from the lens, the image lecomes more dim and foggy ; and at I" the
pmint O produces, as its imagy, a dise. Towants 1 "" this disce enlarges. Hence if the lens and otjeet he lirought to the position in which the hest delinition onenss, at 1 , and if the sereen or eye-piece be then hrought slightly nearer to the lens, there will be less fing, hat cach hright point of the object will be represented by a dise onf light.

If the lens be, on the other hamd, an over-corrected one (showing "negat

Fig. … tive" ipherical internation), the resultas are indiated in Fin 215, which is exaggerated in the same way as Fig. 214.

Here the conditions are exactly reversed: when the sereen or eyc-pisee is hought metere the lens than J, the ressultant inage is more fogsy.

When the lens and the olject are seprated, the eflect is as if the sereen were shifted towards the lens; and with an overcorrected lens the inage becomes more foggr, with an mulercorrected lens less fogsy.

The hazes or fogs referred to may be realily olserved by taking an orlinary single lens, with a eandle flame at some feet listance: if we try to make an image of the candle flame on a screen, it will he ohserved that there is a laek of brightness in the imare, and a halo round it. If a plano-convex lens le usel. it will be observel that this effect is much more prononnced if the plane side of the lens be towards the alistant candle than it is when the convex sile is towards it. Conversely, if we want to produce a fairly miform parallel bean of light ly means of a candle near at hand and a plann-convex lens so placed that the candle is in its foons, it is much better to thin the convex side of the lens towards the candle, for the spherical aberration is in that position only one-fourth what it is when the other side of the lens is turned to the liglat.

It is important that a lens or a system of lenses shoukd be aplanatic when it is intended to use it as a condenser. The problem here is--Given a parallel beam of light, how is that light 10 he brought to bear upon a point in a transparent object, so that that olject may appear to shine lyy its own light? Necessarily the answer is that both the axial and the peripheral parts of the heam must come to the same focus, and the
beint ol the wheret which it is desiren sis to ithminate matst be put in that fochs. Buth the wial amble the peripharal parts of is puatlel bean, or imbend al any bean, can only low sur bonght to a single penint by an alsolutely aphatitice lemsorombination, which is at the same time well anchomatised ; furl hence the value of the "achromatic condenser" in microscoly. liy this appliance a patialled lxam of light, obtained by means of other devies, is concentrated 1 pon a point of the objeet, which point in its tmen acts as a source of light-waves.

It is found that the lest results are obtained when the condenser hrings light to the olject murder the same angle iss that moder which the objective receives light

 from it, as in Fig. 216: for in that case the Diffraction-Fringes (p. 346), which temel to hlur the resultant real imane, are reduced to it minimum lreatth, and the ontline of the object is most clearly definet.

If by any mems the Rays sent thromgh a splerically-aberrant lens were reversed, their respertive paths would he retmaed; the lens womld correct the errors and retnin the bays in a parallel or otherwise miform lean. If, aceordingly, the rays received by a sphericallyaberrant lens happened, for any reason, to have coures resembling, in a reversed direction, those into which a parallel beam would be thrown by the spherical Aberration of that lens itself, that lens wonld make them parallel.

This is applied in the correction objective of a microscope: by rotating the enrection-collar of the objective, the lenssystem is somewhat clistorted, througle approximating the lenses of the objeetive (emerally ly making the back-lens approach

Fig. the front one ; and the lens-system is thus rendered somewhat splecrically-aherrant or "under-corrected." The mys from the object 0 (Figs. 21i), when they have traversed the cover-glass, do mot rearl the lens as if they had truly
diverged from O, lint as if they had come from a series of points ranging from $0^{\prime \prime}$ to O^{\prime}. Pat if the objective the undercorredent, the distmen $O^{\prime \prime} O^{\prime}$, in air, may precisely the the Longithelinal spherical Aherration of that oljective: and if that be su, the onjective will eoflect the baysand tramsuit them mifomily. Hence by adjusting the amonnt of under-correction of tha objective, the objective may be mate so to refract the rays frem O that these travel as if from a somewhat haren point, witlo no intervening cover-glass: and the adjustalnde collar Ilms emahles coner-glasses of any thickness to le insed.

Distortion of Images.-The farther any givell

 point of the object is from the axis of a thin-edged lens, the less is the proportionate distance of thu corresponding part of the image from the axis : and conrersely, in a thick-edged lens the greater is that proportionate distance. The result is that if we try to make an image of a square set of black lines ruled in squares, a bicontex lens distorts the image into a barrel-shape, its corners being squeezed in ; and a biconcove lens distorts it into what is called an hour-glass slape, a spuare with its corners pulled out and its sides concave outwarls. This defect, heing a consequence of Spherical Aherration, is remerlied by correcting that abermation.When a photograph of a determinate size has to the made, say oll a "quarter-phate" ($4 \frac{1}{4} \times 3 \frac{1}{+}$ inches), if we use a shortfocus lens the plate suhtends a wider angle than a plate of the same size would do in a more extenderl camera with a longerfoens lens, On a given piate, accordingly, a shorter-focus lens will operate under a wider angle, and the resultant picture will represent a wider expanse, than where we lave a longer-foeus lens used with the same plate; but this use of lenses mnder wide angles brings in, with simple lenses, a certain ilegree of distortion of the circumferential portions of the jicture. This distortion is considerably less in the ease of the long-focms lens, merely through the plate not being large enongh to take in more than a limited eentral portion of that image which the lens has the potentiality of producing. Loug-focus lenses would distort quite as muel as short-focus lenses of the some form, if we used them under equal angles and with objeets whose seale, linealy, was proprtional to the linear dimensions of the lens: but for oljects and images of a given size, the larger the lens,

That is, the longer its liens, the bss the popentionate distortion.
 the dembany lo distontion lyy a single lens: lat motern lens makers have expmotod great skill in slaping amd aljusting combinations of lanses so ats lo get ritl ol this distortion as fan as prossiblu.
la respect of all lenses it is to be noted that liness which are vertical and parallel to one another in the objeet will not appear rertical and parallel to one anothen in the image recoiverl on the serem, maless the sereen le also vertical.

Hence it is essential in the use of a Mologranhic Camora that the gromed-glass screen should always he kept vertical ly the use of the Swing-back. Then if the cancra have to be pointed upwards. say towards a building. the sereen must be sloped forwated so as to remain vertical, and then the vertical lines of the lonilding appear vertical in the resultant picture: whereas, if the ground glass be kepe at right angles to the axis of the eamera, the resultant picture will in that case represent lonidings, ete. all sloping backwards and standing upon lever gromel.

Chromatic Aberration.-In simple convergent Lenses, the more refrangible violet and chemical rays either converge upon a nearer focus, or seem to diverse from a more remote point than the less refrangilde sellow and red. In simple divergent lenses, the virtual foens: for riolet is nearer to the lens. The eonserpenee is,

Fig. 218. for example, that the imacte of a very: small bright point, formed by a convergent lens and thrown upon a sereen or received in the eje, is surrounderl either ly a red or a blue halo. In the former ease the red rays have not ret come 10 a focns: in the latter the blue and riolet have ahealy traversed their foens, and are already diverging.

The distance RV between the foens for red and the focus for violet rays is eallel the longitudinal chromatic aberration of the Lens; the diameter of the lalo. at any point letween the foens for red and the focus fon
viulct, is cilled the lateral chromatic abervation it that $I^{n i n}$ int.

If the whect be an extembal one one of sume hatalth, He hatos belomains to the difliment promts of the ohject will oxerlip one abother ; hat the crices ol the nlycet, or of diflimently illammated portions therenf, will appean conlunred.

In a simple convergent lens, say ol' crown-istass, ('hromatic Aberdation is got rid of and the lens achromatised, so that it grives images not coloured at the edoses, by comhinims with it a weaker divergent lens ol flint-glatss.
'The combination acts as a weaker lens; but il' the woratnes and the refoutive indices for the ditherent coloms le: propery chosen, the irrationality of dispersion between tlint-glass and crown-glass comes into play, and two selected colonss, say blue and red, are brought to the same foums. For ordinary microscopic objectives, the colurrs so dealt with are usmally extreme blue and yelluwish-green. If three lenses be used, three colour's may be brourht to the sane focus; and so on; bat this more complicated achamatic correction las. only becu readily attanable since 1886 , when the new varieties of dena glass canc in to the market. In photographic lenses, the ain is to bring average actinic and average visible rays (or in some cases, merely blue and violet) as nearly as may be to the same focus; so that it is quite possible that a lens which is really a fine one from the photograplic point of view may appear somewhat non-itehromatic if used as the object-glass of at telescopie combination ; and on the other land there have been photorraphie lenses manle, as for Kutherford's lunar photographic work, in which the aim has leeen to bring the actinic rays all to the same focus, and liy neans of which photographs of extmordiuary clearness have been taken, while the defnition of the visible image on the sereen remains somewhat blurled.

If ane of the lenses have a plane face while the other lens is synmetrical, as in Fig. 219, the difference of dispersive powers nust he in l^{\prime} twiee as great as in C ; for the two eurved surfaces of C are of the same form as the single reliacting surface of F . In Hint-glass the eliflerence of clispersive powers is more than twice as great as in crown ; so that the curvatures must be somewhat modified. 'I'leu when the curva-

ris. :l! tures have been settled for Chromatic Aberration, they may again have to be altered in order to deal with Spherical Aber-
 in order lo secene this and. 'This chanse morl not alleot the focal lemeth on the comomaticeaberoations conterelion: but it is always desimble to shape the crown-riass lens symmetrially, since this involves, un the whole, the least dilliculty in wrinding the lenses to the required curves.

Chromatic aboration may beremedied in a lantern
10ํ... ••20.
Claromatic aberation may be remod

- by andusting the mutual distance condenser by aljusting the mutual distance "1 the two ewnponent lenses until the divergent spectron-forming rays have so fin seprarated that the violet rays fall 1 pon a part of the second lens distinctly less refinctiner than

lin. 2el. the prot upon which the red rays lall. liy this means both lays may be matle to emerge paratleh. Cons. versely, parallel rays of white light are brought aproximately to the same foems O.

If a lens or combination of lenses be corrected fur Chromatic Aberration in respect of rays parallel to the axis, it may very well fail in this respect when the rays fall upon it obliquely; and in general there is always in certain amount of coloured fringe (the so-calted "secondary spectrum") round the image of any bright object seen through a lens against a black lackground, or black object seen against a bright background, this fringe being due to the imperfect correction for colours other than the particular pair for which Achronatism has been attained.

It may always be ascertained whether a lens is achromatised, by covering half of its aperture with a slip of black paper: then, as an ohject, view through the lens a small hok: in a black plate, held up against a bright light. If the lens be under-achromatised or not achromatised at all, there will be more refraction of the violet than of the red rays, so that the image of the bright hole in the black plate has a blue or violet border on the side corresponding to the black paper, and an orange or red border on the side corresponding to the free border of the lens. If on the other hand it be over-corrected, it will present precisely the reverse phenomena: and if it be accurately achromatised, there will be no such fringes. It is possible that different parts of the lens may differ in respect of the completeness with whiel achromatism has been secured.
'Ihis may be asectatned by putting the lothe in the pathe if gatrallel riby of light amd moving about, as an oljecet lookel at, a minute lake in a batek plate with at bright backyrommd. It may be fomed that the hole apperas colourless when upposite the ceatre of the phate but colour-margined whers neare its proijhery. Chromatic Aberation may he observed in the hmman eye if a wimbow, with winlow-bins, be looked at patit the edere of a black catul : the elages of the window-hans then : 1 peat finged with colous. In that event only hald the eye is in use: and when the whole eye is in use these colourmatyins all overlap one another, and produce together a total ethect of fogging the general pheture by a haze of white light, an chece of wheh we are not genemally conscions. If heat-ray's and nltaiviolet actinicurs had given rise to visual semsation, this haze woukd be so well marked as to blur one vismal pereeption of "xtemal objects. As it is, eymally-distant diflerentlycoloned objeets are not in focus at the same time; when we look at cyually-distant red and blue objects we are yuasi-shori-sighted for the blue ones, which apmear farther off.

Microscopic objectives which are achromatised for three colonts and have their spherical aberration corrected for two colours are called apochromatic lenses.

Optical Instruments. - In the Astronomical

 Telescope we lave first an object-glass, that is, i convergent lens (usually an achromatic duablet), which forms an inverted real image in the telescope tube: the other end of the instrument bear's the eye-piece, a convergent lens (in achromatic comhination of lenses) which is moved backwards or forwards until it comes to stand in a proper position in relation to this real image. In this proper position, that real image is used as an object for the eye-piece, at such a distance from it that a virtual image is formed at the Lenst Distance, from the eye, for Distinct Vision. In fact, the eye-picee acts as an wdinary magnifying glass wherewith the Real Imare is cxanined, as if that real inage were an ordinary object brought to a certain distance from the eyc-picce. And as we have seen before, the real imarge of nearer objects will be farther from the olject-glass than the image of farther objects; so that the eye-piece must be moved away from the objective in order to examine theimatre nf nearer oljects, and must he moved towards it in order to examitue that of liather ones. 'This description applies properly wo the astronomical refrating telescope, its also to certain "night-glasses," which give an inverterl image. In Fig. e222 the real imare within the telescope tuhe is at li, imel the resultant virtual image at V; and the virtual image, though moneh smaller than the distant olject, subtents a greater angle at the eye of the ob-civer than the distant oljecet could itself do.

 (Compare Fis, 207.) Jlence if the oljeet be looked at throngh the telescope with one eye, and be looked at in the ordinary way with the othere eye, the telescopic image will appen considerably larger than the olject itself dues.

In the ordinary Terrestrial Telescope, the eye-piece is not left in the above simple form : sone device has tu be adopted in order to reinvert the imare so as to make it erect, like the original object itself. This is eflected loy using a second lens (or usually a combination of lenses) which shall treat the first Real Image, prouluced by the object-rinass, as its object, and shall produce a second real image, an invertel image of the first inverted real image, further up the instrument, that is, nearer the eye. 'This second inversion has, of course, the elfect of making the second real image erect. Then the eye-lens examines this second Real Tmage, and makes a Tirtual image of it. As might be expected, single lenses cannot be used in actual instruments, for each lens must be achromatic and aplanatic: and this can only be secured by transforming each single lens into an appropriate corrected combination.

The terrestrial telescope, with its erect image, has been modified for the examination of near objects in Ploessl's dissecting microscopes.

In the Opera-glass there is, in front, a convergent lens (the object-glass) and at the eye a divergent one
(the eye-piece). The object-glatsi temts to matie in lieal Lmare behind the ege-pices: hat the eye-piece in mover back until it sets into a porition where, catching the conserging rays, it makes them diverge as if they han come foon an crect virtual image, atome 10 inches in fromt of the eye or, generally, at the mimimmm distance tor distinct rision. But this pesition is one in which the Aceommodation of the eye is stameal to the utmost ; and it is better to withdraw the eye-piece still firther from the olject-glass, and therely to throw the virtual image forward, so that we may look at it more comfortally. This throwing forwarl of the viatual image reaches its limit when the Real Tmage tembs 10 br formed by the object-glass at a point corresponding to a principal Focus of the eye-piece; then the rays emerge from the eye-piece as if from an olject at an infinite distance.

In the Telescope and Opera-Glass, light falling on a comparatively large olject-glass is concentrated so as to fill within the pupil of the eye: and thus objects whieh are too dim, for want of light, to be readily sem by the massisted eye may be distinctly seen by their aid.

Opera-ghasses are very useful in this respect, and may be used in a comparatively dim twilight or dusk. They are used in some college classes on the Continent in order to look at lanternprojections which are too dim on the sereen to he seen in the ordinary way by the unaidel eye. Mr. Franeis Cialton fouml them useful at might in South Africa. Where the difticulty of sceing objects arises from want of light, the larger the objectglass the better: for example, for seeing nebnlie by means of the astronomical telescope a large aperture is requirch. But for resolution of detail, where the liglit is sufficient, it is, in telcscopes and opera-glasses, not width of aperture but accuracy of correction which is nceessary: and a smaller telescope, if a fine one, may tesolve dutail which one of larger size may lue umalile to grasl'

In the Microscope there are two molifications. The easier one to understand is the mineroscope litted
with it Ramsthon rye-picee, which is, howerer, not the nsual form. la this case the objective, a lens-combination of short focus, with its nodal points very nernly conneiting with the terminal faces of its lensee, forms an inverted real image sitnated up the tube.

Lee ns say that this peal image is formen 7 ! inchas atove ther mper nodal point of the ohjective, on practieally, 7 ! inclaes above the oljective itself, while the true Foom Dengill of the ohfective is say 0.075 on inch. Then the oljert will he at 0.075 inch, nearly, from the lower modal pint of the ohjertive. or practically, from the lower on anterin face of the front fans.
 the real inage formed ul the tulne is larger in the ratio ol': 1 : or 7 • $5: 0.075$, or $100: 1$, linearly, and is therefore liaff an inch in diancter: so that the Magnification of this real imate then has a value of 100, the Real Image actually having 100 times the diameter of the Othect.

This real image may be seen on removing the rye-piece and looking down the tule from a distance: and it may alon be rendered visible by letting down a little dise of tissne paper into the tube until the pajer, acting as a screen, coincilles with it.

The real image produced by the objective is itself treated, in the complete microscope, as the object of the Ramsten eye-piece. This eye-picce is a convergent combination adjusted so that the real image which is to be inspected lics within its focus, and forms a virtual image at 10 inches distance from the upper nodal point of the eye-priece, or practically at 10 inches from the Eye,

If the real innage be at $2 \frac{1}{2}$ inches from the cye, the virtinal image at 10 inches from the cye is 4 times as large as the real image in the tube: and thus on instrmment has produced an image (virtual and inverted), which is 400 times as large as the original object.

If, in the case supposed, an observer look down the microseope with one eye while with the other he looks at an inch scale laid down at 10 inches from the cye, he will see the image of the object ($\frac{1}{0.0}$ inch) apprently coincide with two inches of the scale. If his object be itself a micrometer-scale. finely engraved on glass, he can thus ascertain the magnify-
ing power of his mictosene ; lon if the imare of en口 inch conciles in this way with 2 inchos of an semle, he knows that the magnifing porme of the instrmment is 400 ; and then, il any other object of mbnown si\% give an inage which coinchites, with saly hall an ineh on the sambe laid down :as bedome, he knows that the size of that ohjeet is shanch linear. Jint the observer may be short-sighted; in that case a virtanl image at 10 inches from his revental not suit him. He will make it a virtual imase at say oberas. This he does hy ratking down the mionseope son as to throw the first real imate farther up, neare the eyr-piece : then the eye-piece makes a vintual image also meare the eye-piece, say at. 5 inches fom the eye. This rinturl image is, memly, hatl the si\%e of the image produced hy the former observer. If the short-sighted olserver proent to measure with in seale in the same way, he will lime that in order to make the virtual image be at the same thistance as the seale (so that there may ho no parallax, or reative novement between the two, when he moves his hend slightly from sille to side), lie monst lay lis scale not at 10 inches lout at live inches foom his eye ; and he will then find that the inase will apparently coincile only with about one inch of the seale ; so that the magnifying power of the given misoscope is less for him, heing only ahomt. 200 instead of fon as it is low the nommal observer. Similarly, a long-sighted obsenve will work with images and scales at a distance rreater than 10 inches ; aud for him the same microseope will have a magnifying power greater than 100. But in all these cases the visual angle under which the image is sect, and therefore the acturl diameter of the image found on the retina, is aproximately the same; for 1 inch at 5 inclues distance, and 2 innhes at 10 inches distance, subtent the same angle.

Eren the two eyes of the same observer may be unequal in power. Therdore it is of advantage to make one and the same eye observe both the image and the scale. This is edlected by means of a (levire callet a camera lucida, which presents different forms, alrealy deseribed (p. 282).

To return to the Ere-picce. The Ramsden eyepiece consists of two equal plano-convex lenses with an interrening diaphragm, as in Fig. 223: it procluces comparatively small distortion ancl is therefore well suiterl for micrometric work, while

Ficr :19\%。 it has also a broand fiell of view : but the cyc-piece which is generally preferrerl is the Campani or Huyghenian
oye-picco. In this there are two lenses at a distance from one anothor: the lower of these, P , is the field-lens, while the uprer, A, is the eyc-lens. The Real lmage prodnced ly the oljective is thown well up, so that in the alsence of the eye-piece it wouk lee formerd

Fig. 294. actatly ontside the microscope-inbe. The rays converging on their way to forn this image are intercepted by the fhano-themes fiedd-lens B, and then more rapislly converge so as to form a real image alove the focus of the smaller and more powerfind phanoconvex eye-lens A. At the level of this image a diaphragm D is fixed. The lens A, in its turn, makes a Virtual Image at an apropriate distance (10 inches) from the eye.

When we use a higher power cye-picee, the Focus of this is nearer to the eye; the Real Image to be inspected by the eyepiece mnst therefore be former higher up the tube ; and in order to bring this about, the microscope-tube minst he racked down so as to make the objective approach the object.

In the Ophthalmoscope there is a concave mirror which reflects light from a lamp: this light converges upon and passes through a focus in front of the Eye observed : as it diverges from this focus it meets a convergent lens, which makes it converge on a focus within the media of the observed eye itself ; and from this focus within the eye, the light diverges so as to illuminate the fundus or back of the eye. The back of the eye, being thus illuminated, radiates light: this light returns through the media of the eye, and on emergence therefrom it meets the eonvergent lens before mentioned, which forms a real image of the illuminater] retina, larger in scale than the retina itself. This Real Image is looked at through an aperture in the mirror, and may be still further magnified by a secoud lens belind the mirror.

There is another ophthalmoscopic method, not so much usent
as ther former. The mimor, with the apertare dhemglt it, remanims in before: but it is so nsed as to ilhmminato the fimbles of the ubserved exe dimetly. It the ubserved eye be nommal and "aceommotated for indinity," an cone of rays from any point of the retina to the pripil rateress as at parallel hemm; and if the observer can deprive his eye of all acemomondation, as if lo were looking at an infinitely distant objece, these rays come to a locos exatly mon lise retims, and he sees an orect virual mateged image. But if the observed cye be
 modation, the rats "motre fom the ohserved eye mot paralled hat wouversent ; if it be too short (hypermetropic) they cmeres: diverent; and lenses may be needed to restore the rays to parallelism.
"Focussing" any dioptric or purely transparent. apparatus, loy looking through it, is rery larsely a Ifustion of the amount of accommodation exerterl by the eye of the observer. Let the problem le to fincl out, hy looking throngh it, what the proper position of the draw-tulie of a telescope is, for distant oljects. This is not so easily accomplished as might be expected. It will le found that as the tulbe is gradually lengthened, the real image formerl ly the objective is at first very near the eye-piece, and the rays from it are too divergent, so that the virtual image is too near the eye to be distinctly seen. But when the draw-tulse is so far drawn ont that the virtual inage formed is at a distance of not les, than 8 to 10 inches, the eye puts its accommodation to its utmost strain, and sees the image distinctly. As the draw-tube is still further extenderl, the image is thrown farther and farther back, and the accommodation of the eye is relaxed, lut the innage is still distinctly seen until the image is carried back to an infinite distance. Then the eye is at rest, using no accommodation at all. At that moment the Real Image formed by the olject-glass is, as nearly as may be, at the true focus of the eye-piece, and the rays emerging from the eye-piece are parallel ; but the observer woukl probally not reach this result unless he
had traincol himself to louk though the alpanatus in the same restlul contemplative mamer as one might look at the distant horizon. 'To be able to put one's eyes at rest in this way, in the use of dioptric apparatus, is an art which is worth acquiring by any one whose eyes are nopmal and who expects to have much to do with denses ; and it is illustrater by what we have said about the Ophthatinoscope.

The practical rule for focussing a telescope would therefore le first to lengthen the instrument too much and then to shorten it mutil the inage first connes distinctly into viow as if at an infinite distance ; and this is what people who use teleseopes, opera-glasses, etc., usually do. The telescope only "lrings distant objects near" when the tube is too numb shortened down ; and then it may bring the image of them even within a few inches of the cye; lout this eflect is the to the Eye itself being foeussed upon a near point, and the V'irtual Image being brought ulp to that point.

When a lens is used as a magnifying glass, the lens should be at first too far from the object, and shoult then be made to approaeh the object until the image first becomes distinctly visible, virtual at an infinite distance.

In the usual way of using the microscope, the tulue of the instrument is racker up and then gradually lowered into posilion until the ohject comes distinctly into view, as a virtual image at an infinite distance. If the lens be first brought as near the cover-glass as is safe, and the tube then racked upwards, the object first comes listinctly into view as a virtual image at 10 inches distance. The acommodation of the eye is then strainel to the utmost. The 10 -ineh method has, intriusically, ouly the advantage of giving a standard for measurements of Linear Amplifieation; but as lenses are made, they are in fact corrected for this distance, or even, in many Continental lenses, for a still shorter distance of the virtual image.

A short-sighted person would not find the trie Foens of a lens, or, generally, make the emergent rays parallel, in the way deseribed. The distance whieh he would find would be sueh a distance as would eause the rays to enter his cye with a divergence corresponding to his own greatest distance of distinct vision, say 20 or 25 inches. If, however, he were provided with divergent spectacles which would give parallel rays this same legree of divergence, and thus extend his range of vision ny to the horizon. he would then be in nearly the
satme pusition ats a hommal-sighteal porsum, Similaty at longsighted person, provilal with the shomgest convergent lenses whirh mould still allow him lo seo very distan ohjects distinetly, would also be in tho satme fosition as a nomalsiglited person.

Istermbrave

Light is known to be a wave-motion, thongh the circmustance that it presents phemmena exactly correspuntinis to the mutual interference of Waves. When and where the erest of mave exatly nentralises the trough of amother ware erossimes it, there is Rest: and we have, in Light, correspmonisf phenomena of darkness where Light-waves interfere with one another: This darkness may manifert itself in two Ways: as actual Darkness at patienlar points; or by the absence or cutting out, at prarticular points, of particular components of white light, so that the rematmeler produces an impression of colour: and the phemomena attendant on Interference generally present in beautifnt display of Colours, as for example, the colon's seen on a soap-buble shinimg in the sum.

Suprose a thin soap-bubble film AB, and suppose a ray of monochromatic light, light of one colons, of one wave-length, to strike it. Part of the light will bereflecterl at P and will travel towarels T' : part will be refracted towards P' and will be there reflected and find its way out towarts T. Now suppose that

Fis. 295 the whole path traversed by the light within the film is exactly one wave-length: the light rellected at P and the light reflected fronn P^{\prime} would then, we might expect, be in the same phase, both sets of waves being at crests and at troughs at the same time. But there comes in another circumstance, which is that the light, in undergoing reflexion at P^{\prime}, at the surface of the less refracting mediun, indergoes loss of half a wave-
length. 'flar anow' of this pronsition belongs fo the Theory of Waves. 'The light-wavers fiem J" therefore, as they innive at 'T, wr in opposition to the lightwaves coming fion I': the crest of a reflected wate from P' arrives simultamensly with the trongh of a deftacted amd tetheted wave from l^{\prime}; aml the bye at 'I sece no light, for at 'J' 1he resultant of the "hposed wates is Rost. So for light of some one "olour', witla a eonespouling definite wave-length: lout il the light incident at P ' be mixed white light, the othere components will not be cutirely cat ont, thongh some of then will bx weakened: and the Eye at T will perceive sone light, hat this will be coloured, on account of the sulnacetion of the particular coloured-light which hats heen clininated by Interference. With some other thickness of film, the light which will be cut out will have some different wave-length and colour: and with different
 This accounts for the play of colours on oil upon the surface of water, on films of iron oxide, on steel, on soap-bmbles, etc. If the film have a regularly graded thickness, as the thickness increases the ware-lenglh of the light cut ont goes on increasing along with it, and thus a sort of a spectrum may be produced. The filn may be a film of air, as between a cover-glass and a micruscopic slide squeczed together: in this case the luss of half a wave-length is at the upper, not at the lower boundary of the film. When a shallow lens is squeczed against glass, colotred spectra are produced which have a circular form, and are known as Newton's Rings.

If we fit a convex lens into the hollow of a coneare lens, these Newton's rings will be observable at the midpoint if the conver lens hare the sharper curvature, round the edges if it be the flatter of the two. When the curvatures are exaetly the same, the Newton's rings disappear. These results are most readily attained in monochromatic light.

Fine grooving of a reflecting surface may produce
antugntis pesults : as in the iridescence of mather of feath and of botertlies' wings or in the bands of ciliat in C'tenophora; the light reflected from the ridges interferes with that rellected from the grooves, simply wn accoment of its laving thelvelled ashorter distance and being in alvance of the other on artival in the eye.

The twinkling of stars is due to this, that rays reaching dilliment parts of the pupit of the eye, having come from what is pactically a mere point through irregularly-refracting straks of air (consection-currents, ete.) in the atmosphere, reach the eye in diflerent phases. Now one enlour is extinguished, now another. Il a star be looked at with an opera-glass, and the opera-glass slightly but rapidly waved about, the image of the star arlears spread out into a many-coloured bancl. Il a planet be lookel at in the same way, the image spreads out into a plain luminous band; for planets, having an appreciable dise, twinkle only at their edges.

That Light should travel in straight lines, as it does, is itself a consepuence of Interference. At any point not in the straight course, the eflects of the dillerent parts of the wave-front are such as to neutralise one another' ; that is, provided the breadth of the wave-front is great in comprison with the wave-length. Oljects of appreciable breadth will thus cast a fairly sharl shadow if the source of lights be a point: but an absolutely sharp shadow is a thing unknown.

The projection of shadows on a screen from a minute source of light, such as the lime-light, or smnlight concentrated by a short-focus lens, is frequently of service in demonstrating the action of apparatus.

One consequence of the travel of Light in straight lines is that if a small hole, a pinhole, be made in a black card, a screen placed behind this card will have formed upon it a picture of extemal oljects, as if the pinhole contained a lens; and if the distance between the card and the pinhole he sulficiently great, the image, though dim, is as distinct as that which can lre

Fig. 220. produced by any lens. If the aperture be $\frac{1}{10}$ inch in diameter, this occurs at a minimun distance of 250 inches: bint if, with that aperture, the distance be less, the

 the minimum distatuee is $8 \cdot 51$ inches (pimhole photography); but with apertmes as small ats this, or smaller, JimiationFringes begin to confuse the resilt.

If the source of light be of some breadth there is a penumbra on frinere of half shatow ronnel the full shatlow formed upon a sereen. l'rom any print within this pentumbres, it part of the somece of light can be seen. If the sonnce of light be a Point, there are very Harow fringes ol alternate light and darkness, which bitur the edge or boundary of the shatlow formed. 'The production of these fringes is called Diffraction.

The shampledelined edge of the wave-front, as it passes the obstacle, itself acts as a source of light: amd the waves to which this gives rise alternately interfere with and help the wave-front itsell: and thes there are formed liniges of alternate light and darkness. When the oljects which lom shanlows are very small, and the source of light very minute, these fringes may encroach on the shadow so as to blur it altogether, and even to form a ecntral spot or line of Inightness at its centre. 'Tlis may be seen by trying to east the shadow of a hair from a soutce of light consisting merely of sunlight let through a surall drop of grlycerine in in minute hole in a card, or of electric light concentrated to a poiut in the focms of a high-power lens.

If the light employed be mixed or white light, eacls colour forms its own breadth of fringe, and the fringes are converted into narrow spectra.

Where we lave light coming from a luminons point throurfh a region containing mmerons small particles, the image of the luminons point is surrounded by coloured rings, due to difiraction. We see this in the appearance of a distant lamp as scen throngh a haze, or throngh a window-pane gently breathed on, or thromgh glass covered with lyeopodimm ; or in the coloured rings seeu romnd bright points in glaucoma, in which clisease particles float in the vitreous humonr of the eye. 'I'he smaller the partieles, the wider the rings.

Where we have a number of luminous points at very small distances from one another, as in microseopical structures, diatom shells, and tissues, we find
filfiaction assume a most infortant bearing. The wares fiom the seremal luminoms points intertere with nue: another ant [ronluce Diffraction Spectra. 'lhis is must distincty sern in diffiaction-gratings, whirl, consist of plates of ghass or metal ruled with very mumerons grooves. Light is mive to shine through on upon these gratings, and the tramsmitted ur reflected tisht, if it be monochomatic, is sent in "lifferent directions after the manner of lig. 70 . If it be coloned, each component colond has shighty dillement paths. There is thins formed a succession of spectra. These spectra are very pure ; and they are preferable to prismspectra in respect that the deviation of each particular coloned-light depends, for any given grating, only on the wave-length (the sine of the angle of deflection heing proportional to the number of grooves ansl to the wave-length only), insteal of being also dependent upon specific anomalies associated with the particular kine of glass employed.

A microscopical preparation of muscular tissue will often be found to atet as a more or less efficient diftraction-grating : the striations on the fibres take the place of the grooves che graved on the glass.

Diflraction is of great importance in the study of the beharivur of microscopical objectives ; and attention to this has enabled them to be greatly improved during recent years. In Lenses, though it is convenient, and approximately correct, to say so, it never is truly the case that the image of a point is itself a point. It coukl only be a print if the whole wave-system originating in the object-point converged upon the imagepoint. In that case all lateral effects would mutually neutralise one another. But in the ordinary use of a Lens we lane only a portion of the whole wave-motion passed through the lens; and the mutual neutralisation of lateral effect.s is incomplete. The result is that the image of a bright point is really a bright dise,
 termally, and sumomeded hy concentrie rings of altermate light and darkness, or by suscessive colonred ammula spectra. 'The greater the proportion of the whole wave-mation which gres throngh the lens, the more nearly will the lmage of a bright point itsolf correspond to a bright point of light; and hence it is of importance to get the lens as near to the olject as possible when we want excellence of definition of the image, or else - which is cynivalent for this purpose-to use a lens in which the aperture is as wide as possible, or the dianeter of the lens as great as may be, in proportion to the distance between the oljeet and the front face of the lens.

In the objeet-lens of a mieroseope it is therefore of importance to bring the olject as near the]ens as possible, or otherwise to colleet into the lens as wide as possible a bundle of rays from the olject. When this is done there is undoubtedly a tendency to increase spherical and chromatic aberration, and thereby to impair the definition in the resulting image; but these aberrations can be got rid of by suitable correction. The importance of collecting a wide bundle of rays into the object-lens of the mieroscope is that we have to deal with very minute objects which may be considered as practically equivalent to points; then unless a large proportion of the whole wave-front be passed through the lens, the image produced by a minute object may be merely the product of a number of diffraetion-fringes ; and the result of the combination of such diffractionfringes may be an Image of some form quite different from that of the structure examined. When the breadth of the object is several times as great as a wave-length of light, the image will resemble the object in its form, for the object is in that case no longer comparable to a mere point: any diffraction-ftinge waves which may be produced travel closely along with the direct image-forming waves: and in such cases a fairly narrow angle of
apertme may suthe to admit the whole diflmation-finge system, and thess to form an aceurate image of the oljeet, ans in telescopes and opera-glatses. But when we have to do with tinely-grained structures, the diffractionfringes spread out at wiler angles (Fig. 70), and it is necessary, in order to get them in to the lems and thins to eniable an accunate image to be formed, to nse a lens which presents a companatively wide or extombed front to the object. The image of a fine-grinined object will atways resemble the object more, the wider the angle under which the lens admits rays from any one pront of the object : and the finer grained the structure, the witer should this angle be; that is, the greater should be the "Aperture" of the lens.

The "aperture" of a Lens is varionsly defined, to the confusion of the subject. In the first place let parallel rays in Fig. 227 be made, by the lens, to converge upon the focal point F ; then the ratio between the breadth ui of the parallel bean, or the diameter of the baek-lens (as a numerator) and tlie distance LF between the front face of the lens and the focal point F (as the divisor) is the Aperture, according to one definition (i). Thus in a " $\frac{1}{2}$-inch objective" (an oljective in

Fis. 2.2 which this distance OF is $\frac{1}{2}$-inch) whose back lens had a dianeter of $\frac{1}{2}$ inch, the aperture would be 1.00 .

But a part of the diameter of the lack lens might be ineffective: light entering it from behind might, by reason of diaphragms, mounting, etc., not reach F at all : or conversely, light radiating from F might fail to fill the apparent diameter of the back lens with light, and be confined to a central dise of say $\frac{1}{4}$-inch dianeter. In that case the effective aperture (ii) would be $\frac{1}{4} / \frac{1}{2}=\frac{1}{2}$.

Then again, the Aperture of a lens has been detined as the ratio not for parallel rays but for such rays as traverse the lens during the actual use of the instrument (iii) : that is the ratio between the breadth of
the beime emergent at the back tom the distance 1 (i, when a bright point of light is situater at (i ; where (it is the praition oecupied by an object in the ominary use of the instrmment.

Asain, the Aperture, on the "angular aperture," is (iv) the number of degrees of angle letween (i) and (10), where (10 and CO^{\prime} are respectively the extreme rays, from the olject C , that can fim their way through the combination and ont at the baek lens.

In a simple lens all this is simplified loy the circumstane that we have not to consider the front and back lenses of a combination, lout only the front and back faces of the lens.

But during recent years there has arisen a new methor (v) of specifying the Aperture of a microscopic objective, by stating its "Numerical Aperture." In air this is the ratio between half the clear or eflective diameter OO^{\prime} (as a numerator) and the distance GO or GO^{\prime} (as a divisor) ; that is it is equal to the sine of hulf the Angular Aperture OGO', G being, as before, the position of the object. The greatest possible value that could be attained by the Angular A pertnre $O G O^{\prime}$ is 180° when the object G comes close up to the point C: therefore the greatest possible value of the angle OGL is 90° : and as the sine of 90° is 1 , the greatest possible valne of the Numerical A perture, in air, would be 1 .

In practice there is always some room required for the thiekness of the cover-glass, and for the phay necessary in focussing, so that the angular aperture cannot execed 130°; and the sine of half 130°, or 65°, is 0.906 , the practical maximum Nmmerieal Aperture, in air:

Now let us suppose that the object G stands protected by a thin cover-glass C, and that the space between the cover-glass and the lens L is filled with water, \mathbb{T}. The rays from G may be considered as meeting the corerglass up to a maximtm angle of 180°, or 90° on each side of the line GL. As they enter the cover-glass they will bee
refracted towarls the line (ita: hut when they emeres from it they will mot wsume parallelism to their former comrsc, but will travel, in the water, more nearly parallel to the line OLA: and hlus a greater number of rays will fime their why into the lens when water occupics

 the space between the eover-glass and the lens than womb do so when that space was aceupied ly free air:

The maximun angle under which mys conld enter the lens is, in water, abont 83 ! and the 180 , in air, have beco compressed into $83!$ in water: The reation hetween these angles is that $\sin \left({ }^{2} 0\right)=15 \times \sin \left(5 \times 83 \frac{1}{2}\right)^{\prime}$, where the 15 is the refractive index of water: Genmally, the Numerical Aperture is equal to β sin $"$, where β is the index of refraction of the medimm, and u is half the angle under which mys cuter L .

The value of this arrangement, in so fir merely as it serves for picking up a greater mumber of Rars from the object ant senting them into the lens, is of merely secondary importance; a brighter illumination would produce the same eflect. But it was early observed that when wide-angle illumination was nsel, the microscope showed details of structure hetter ; and then, if the object were itself immersed in water, the resolution of details of structure was even better. This remainerl unexplained until Prof. Abbe took up the subject. He found the key to the seeret; we must get the spreading diffraction-fringes into the lens.

Suppose we have a structure presenting fincly-grained and regular markings, say a diffraction-grating: and let the lines on that diflimetion-grating be n to the centimetre. If we take any one point in that object, any one line in that grating, as the thing which we desire to see distinetly or to resolve, and if we illuminate that point from hehind, then we know that from any one point of such an object the various diffractionspectra pertaining to that point are proprated along directions in space making eertain angles $\delta^{\prime}, \delta^{\prime \prime}, \delta^{\prime \prime \prime}$, etc., with the axis of the illuminating beam. (See Fig. 70.)

These angles are such that $\sin \delta^{\prime}=\cdots, \sin \partial^{\prime \prime}=2 n \lambda, \sin \delta^{\prime \prime \prime}=$

3nd and so on, where λ is the average wave-length of the light employed ; and therefore the smatler the wave-lengeth, the more closely are these diffraction fringes or sjectrat parkel twacthert.
bat it wilh the observed that if the ohject be inmersed in a modiun of high refractive power, the wave-lengths aro smaller in that medium than in air ; and henee the diffraction fringes from each point of the object pursue conrses which do not spread apart from one another as much as they do in air: besides this, there are actually a greater number of these frimges within 180 in oil or water than there are in air.

In a mediun of higher reflactive power it is therefore casien to get one or more of these fringes into the lens than it is in air, Hoter or in oil they may mest and enter the lens, where in ail they wonld pass outside it.
'Then, if we take it that we camot obtain any distinct resolntion of detail at all muless we can get at least the first dilliaction-fringe into the lens, we must get the objeet neur enough to allow this lirst difliaction-fringe

Fig. 220. to enter the lens, and not to pass away ontside it.

Ideally we ouglit to get them all in in order to form a true picture: lut if we get none in, there maty be no manifest relation between the form of a fine-grainel object and that of its image. If we stop out some of the diflimation spectra which tend
to be formed, we may obtain the most singular changes in the resultant image. We may see these diflraction spectra on looking down the tube of a mieroseope (the eye-pieee being removel), under whieh an olject with a very fine-grained pattern is being examined.

On looking at the equation $\sin \delta^{\prime}=n \lambda$, for the direction taken by the first diffraetion-fringe, we see that the distance of the olject (x mnst he such as to make the angle OGC not less than an angle whose sine shall be equal to $n \lambda$.

If, on the other hand, the mediun be water, whose refraetive index is $\frac{t}{w}$, the distance may be increasel so that $\mathrm{OG}^{\prime}=\frac{1}{3} \mathrm{OG}^{\mathrm{O}}$, anl yet the first diffraction-fringe will still enter the lens. 'This is beeanse the wave-length λ is smaller in water : therefore the product ind is smaller : therefore $\sin \delta^{\prime}$ is smaller, and the mininum permissible angle δ^{\prime} is a smaller angle, so that (${ }^{\prime}$ may be farther away than G.

In oil, whieh has a still higher refractive index than water, the permissible angle is a still smaller one, so that the object may be still farther off, ind yet be ernally well defined.

If now we make the objeet approach the hons, we lime that Wo habe passed beyome the conditions which are at all possihle int any lens working in air. The ntmast that at given air-Lons can do is to show markings distinetly when their number, x per. em., is eymal (in consequence of the mation sin $\delta^{\prime}-\quad \| \lambda$) to sin δ^{\prime}. A, where δ^{\prime} is half the actual angle of aperture. 'Thus suppose the light employed has a wine-henerth $\lambda=$ godon em. in air, and that the angular aperinue, or angle O(i) ${ }^{\prime}$, is 130°; then δ^{\prime} is © © 'and the sime of δ^{\prime} is $0 \cdot 906$. 'Then the monlres of matkinss which ean be resolvect is $0 \cdot 906 \div$ gutoo $=18120$ per cerli. or about 16000 to the inth.

In a donser medinm, tho ware-lemeth is shorier than in air: it is $\lambda^{\prime}=\lambda / \beta$, where β is the refmetive index of the mothm. Hence if we nse an oilolens moler a riven actual angular apertme -2δ, the mmber of markings which ean been is $n^{\prime}=\sin \delta \cdot / \lambda^{\prime}=\beta$ sin $\delta . / \lambda$, where λ is the wave-length, for the particular kind of light, in air. Snppose again that the light employed has a wave-length $\lambda=\operatorname{mot}^{\frac{1}{d n o}} \mathrm{~cm}$. in air, aml that the actual ingular apertme is 130^{3}, while the index of refraction of the oil is 1.515 (certar-oil) ; then the number of markings per cun. Which can be distinctly seen is $n^{\prime}=1.515 \times 0.906 \div$ वоип百 $=$ $2 \overline{7}, 450$ to the cm., or 69,730 to the inch.

If the wave-length be diminished otherwise than by using a melium of higl refactive power; if, for instance, we use only violet light of a wave-lergth of $\frac{1}{2000}$ em., we still farther increase the value of n^{\prime}. Hence by photography with ultraviolet rays we may resolve details which the eyo cannot master. There is even a considerable gain in the use of blue light, such as that filtered throngh a solution of ammoniosulphate of copper, or better, through a number of different samples of blue glass.

These numbers are, however', somewhat exaggerated, for they correspond to the markings for which the first diffractionfringe can be got into the lens; but for good resolution a greater number of dillmetion-fringes than this must be got in. The ideal true picture could only be secured by getting them all in. We can get the second fringe in to the lens if the number n be halved: the thind if it be divided by three, and so on. ${ }^{\text {? }}$

The value of n^{\prime} may be made to rise so high that the product $n^{\prime} \lambda$ may be greater than $1 \cdot 00$; and there is no possible angle δ^{\prime} whose sine could have such a value. Hence the oil-lens may correspond to an air-lens with an impossibly wide angle of apertule, exceeding 180°.

The product $u^{\prime} \lambda=\beta n \lambda=\beta$ sin δ^{\prime}, where the actual angular arerture is $2 \delta^{\prime}$; and this protuet, β sin δ^{\prime}, is what is known as
the Numorical Aporture, it being mulerstood, as hefore, that the anorular aprente $2 \delta^{\prime}$ shall he just that which is requisite, atml monore, to let the finst fienge or spectrun into the lans. In air, $\beta-1$, and the Nomerical Λ pertme is equal to sino ${ }^{\prime}$ simply.
'The name Numerical $\Lambda_{\text {perture }}$ sechas to be somewlat cons
 only upon the actual Angular $\Lambda_{\text {perture } 2 \bar{\sigma}^{\prime} \text { hot also npon the }}$ Refractive Index of the hinid emphoyed, or directesl to be employed, with the panticnla shjective; and the product $n^{\prime} \lambda=\beta \sin \delta^{\prime}$ is cessentially a measure of resolving power. rather than of actual A perture.

If the unclium between the lens and the ohject, the coverghass, and the lens, all lave the same intex of refraction (say 1.515, the liquid being eelar-oil), we have a Homogeneous Immersion System, in which a grained strncture can be resolved when its markings are more numerous (say 1 -5l5 tines as numerous in the ease supposed) than those which can bo resolved with a lens working under the same actual angular aperture in air.

Zeiss's objectives are now made with a front lens of flint slass of $\beta=1.72$; and the liquid used is monobromide of naphthalene ($\beta=1 \cdot 655$). Hence the practical Numerical Aperture is as high as $1 \cdot 63$: and such lenses can resolve details which no airlens, and even $n 0$ oil-immersion lens, could grapple with.

Such oil-lenses also present some other advantages. For any given quantity of light, the course of the rays being more direct, less light is lost by reflexion at the first faee of the lons. Again, the index of refraction of the cover-glass being the same as, or more nearly the same as, that of the general medium in which the rays travel, it matters nothing or comparatively little whether there be a cover-glass or not, in this sense, that the introduction or the absence of a cover-glass does not so muels affect the existing correction for Spherieal Aberration; and this renders the collar-comection (Fig. 217) a matter of less importance than it is in lenses which work in air.

Fig. 230. And for a given Magnification there is a greater working distance between the object and tlee lens than there is when ordinary lenses are employed.

From the point of view of Diffraction, the overcorrection or under-correction of a lens for spherical aberration is also of importance. If an over-corrected lens be used, the second difractionfringes, entering the lens at its periphery, do not come to the same focus as the first fringe and the diject rays from
the abject, but come to a foens higher np than the image of the olject amd lirst fringes: ame they teme to produee a ghostly inage situated in a plane abowe the real inarge of the whect and showing, when thas isnlated, twiee as many mankinter as there are in the object. If an mater-corrected lons be nsed, the second tringes temd to form a similar inage lying below the image of the olyeet.
'Lhe measurement of the angle of aperture of a lens or eombination of lenses, in air', depends on the application of Fig. 231. Here parallel days are brought to a focus at F ant then diverge; the distance between If the focus ancl L the liont of the front lens

l'ig. 231. is sulposed to liave been ascertimed. Then a disc of light is formed at $\mathrm{D}:$ and the diameter of the disc, together with the known distance I)F, aflords the necessary data for finding the angle OFO^{\prime}.

Or conversely, the light may travel in the opposite direction ; and a diaphragm at D may be opened or closed or moved towards or away from the lens, until the cone of light $\mathrm{N}^{+} \mathrm{NN}^{\prime}$, fiom an open sky, is such as to fill the back of the lens with light as firl as it will fill.

Or again, the apmaratns may be rotated back-anol-fore romed F nutil a distant small source of light fails, on one side and the other, to sent any light throngh the instrument.

For immersion-lenses, the medium between L and D may be made to consist wholly of flint-glass, with the apmopriate liquid between it and the lens: then a pair of pointers moved out to N and N^{\prime} will indicate the limits of the field of light, and these may, as in Abbe's apertometer, have their Iosition ascertainable by means of an engraved seale along which they are slicl.

Wide-angle microscopical objectives are thus favourable to resolution of detail ; lut not to depth of focus, fur they can only grasp one plane at a time. In order to secure Depth of Focus, the angular aperture must lee comparatively small, and the distance between the lens and the object correspondingly great. As the powers increase, the depth of focus falls ofl witl extreme rapidity ; and with high powers, the slice or section of the
ohject which is in focus is an excessively hain one. The jower of looking into the njject along the line of sieht scems to depenel on two things: (1) the accommodation uf the liye, which acts like an atditional lens or dather serics of lenses ; but in relation to high powers the eflect of this becomes msignilicant: and (2) the circmastance that the Eyc is not sensitive to a moderate respee of blurring, for it is itself incapable of resolving detail presented to it under a less angle than from 1 to 5 minutes of arc; and conserfuently the image is no worse for being harred to that extent.

Since il is necessary, in order to secure definition of extrenely fine detail witlr a microscopic oljjective, to use wide angles in this wity, it follows that if a real image of a fine structure be mate by a low-power or narrowangle objective, no amount of amplification of the image, by high-power eye-pieces or projection on a screen or otlerwise, will show the detail which a wide-angle lens can leveal. Such an image an only show the general contours of the object, not the details of its structure, which may in many cases give no evidence whatever of their existence. On the other hand, when an object has not a finely-detailed structure, narrow-angle lenses are of advantage in respect that in virtue of their depth of focus, they show the mutual relation of the various parts of the object better than wide-angle lenses can do.

It is by means of Interference-Fringes that we are able to measure the length of the waves of Light. By a glass biprism, B in Fig. 232, whose

Fig. 232. angle is very nearly 180°, light from a point S will be refracted so that it travels as if it had come from two sources S^{\prime} and $S^{\prime \prime}$. The source S itself may be the Focus of a Lens through which a beam of light is passed, this light having been rendered approximately monochromatic by absorption. If a screen, or the observer's eye, be placed in front of the biprism, at N (Fig. 233), a series
of alternating dark and bright fringes will hew en. 'The breadth of these fringes cam lee beamed on the screen, and at N the two apparent sutures can be seen and their apparent angular distance, the angle $N^{\prime N} S^{\prime \prime}$, measures. The tangent of hall f this angle can be found in themometrical tables, and the wave-length is then equal to one fringe-breadth multiplied lis twice that tangent.
 angular distance of $17^{\prime 2} 20^{\prime \prime}$; half this is $8^{\prime} 10^{\prime \prime}$: the tangent of this is $0.0025:$ it there are on the screen 100 limes to the emp,
 the velocity of light is, in rom m members, 30000,000000 em, per second, the fremency of the mutation (the product of the velocity into the wavelength), on the member of ware per
 gives an inter of the methods by which these apparently inerodible numerical data are ascertained.

Double Refraction

The study of Double Refraction is one which presents considerable difficulty : lat the results of double refraction are of importance. Crystals lave some kind of molecular grain or directed structure which makes light-vibrations, in particular directions, travel through a crystal with different velocities in different directions.

There is generally a particular Axis or direction in the crystal called the principal axis; and a slice of the

Fig. 234. crystal, cut with its face parallel to this principal axis, is said to have been cut in a principal section. In a crystal of Iceland spar this axis joins the opposite obtuse angles (Fig. 234).

If a slice of Iceland spar le cut at right angles to this principal axis, and if light be sent straight through this slice, it will travel
as if the raystal were ortinary glass : but in no other posilion will it do so. In wery wher direction of ineidence and in esery other moxle of chatting the erystinl, the incilcont lmy is broken up into two. The result may be seen m looking through a crystal of Icelame spar at at pase of print, every character on the page raperas doubled.

The two latys into which an ineirlent ray is split up are called the Ordinary lay ant the Extraordinary Ray,
'The Ordinary Ray travels in Tcelamt spar much as ordinmy light does in slass : the wave-front fom any point of disturbance within the crystal is spherical : and the light obeys the ordinary laws of Refraction. It is 10 be noted, however, that if we find the plane in which the incident ray and the crystalline axis both lie, the ordinary ray is polarised in that plane: that is, its vibuations are restricted to directions at right angles to that plane.

The Extraordinary Ray has a more complicater] behaviour, which we need not follow up: its wave-front is ellipsoidal: but the important point, for us, is that it also is polarised in a plane at right angles or nearly at right angles) to that in which the ordinary ray is polarised ; that is, its vibrations are restricted to directions parallel to the plane containing both the incident ray and the crystalline axis.

This division into 1 wo rays, both of which are polarised, has been utilised in the production of polarised light. There are various devices for this, of which it

Fig. 285, may suffice to mention Nicol's Prism, Fig. 235. In this the incident common light enters a long rhomb of Tceland spar at A and is divided into two rays. The crystal is cut across and recemented by Canada balsam at B, at such an angle that the ordinary ray is totally reflected away when it meets the cemented surface, while the Extraordinary ray goes on through the remainder of the Tceland spar. The face at which it
leases is ent to such an angle that the emergent light runs piactlel to the incident hean. The emergent light, the Extramedimary ray, is therefore polarised.

If phane-polaised light be run through a Nicol's prisur, and if the prism he rotated round a longitudinal axis, in a certain position the light will come throush, as through a transparent boly. In rotational positions of the prism at right angles to this, no light will be transmitted. ln intermediate positions some will pass through and some will he tumed hack.

In the most farourahle position, the in ident plane-polarised light acts, relatively to the cerstal, as an Eximombary ray and is let through. In the most unfavourable position, it acts as an Ordinary my and is tumel asile. In intermediate positions it is broken up, into an Ordinary and an Extraomlinary ray, of whel the one is tramsitted while the other is turnel aside.

A Nicol's prism is therefore a means of detecting plane-polarised light as well as of producing it ; for in the proper position it is quite opaque to plane-polarised light.

If the light be partially or elliptically polarised, the light transmitted will wax and wane as the prism is turnerl, hut will not be extinguishal in any position. If the light be circularly-polarisel, or if it be common or matural light, the light transmitted remains the same in brightness into whatcrer position the prism be turned.

A pair of Nicol prisms may thus be used, the one to produce, the other to detect polarised light; and when the two prisms are turned into positions at right angles to one another, no light comes through.

If the prisms be placed so that no light can come through ; and if a thin film of mica or other doublyrefracting sulstance, of uniform thickness, be causerl to intervene letween them, the field may become filled with light, coloured or white according to the position of the interposed film.

The explanation of this may be divided into two stages.

Iadens suppose the: light which las come thronght the first prisht, the Polarisor, to be polatisel in a vertical phane: the
 Analyser, woukd he liorht polamisel in a llori\%ontal phane; lont thero is mo lisha polarisel in a lomizontal phane, surking trans. mission : lharefore none comes through. But if a film of mica br intopown, with its principal axis oblique io tho vertioal or t.o the horizontal pane, it antsas an ortimary domble reflating substancer and within its own substanee it horaks 11] i.he vertical plane lisht into an ordinary and inl extraordinary bity. If these two bays hat travellenl thronthle the

 promded, on emergence from the filn, into a plane palarinerl ray Lhe same as that whinh loaves the polariser"; but they do not travel at the same rate. ()no or the other, arcorling to the natire of the crystal, is retarded more than thre other: and this diferenue gives rise to a comelition eithre of elliptical or of circular polarisation tu the light which has conne thronglt the mica-liln. When the analyser now romes to deal with this, it splits it into two rays, of whicli it transmits one: ant thus some light now comes throngh the whole apparatus.

Secondly, in this opration each coloured-light acts independently, and earh is acterl upon to a diflerent extrint ly the mica, film. Each energes from the miea film in a diflerent state of Elliptical or Cimenlar Polarisation ; and each is thercfore differently represented in the final Ordimary and Extmordinary rays respectively. The natmal consequence of this is, that the varions colours are extinguished to dillerent extents, and the light which eomes through is not white bnt coloured, except in particular positions of the mica.

When the interposed film is of varied thickness, the field is filled with variously coloured lisht ; and if it be of graded thickness, a kind of a Spectrum is seen.

The doubly-refracting power of a body may flum: be detected when it is placed between crossed prisms.

For example, we know by this means that the dim bands of muscle fibre are donbly-refracting or "anisotropic." Glass hecomes doubly-refiacting on leing eompressed on twisted or stretched. Different starches present. characteristic aplearances, due to a quasi-crystalline simeture.

Potatory Polarisation is a name given to fle rotation of the plane of Plane-Pularised light ly certain
substances such as Quar\% ; the light of each colour to a different extent. If quat\% be nswd botwern crossed Nrians, shonla any kime of colomeal-light, origimally fommine pard of the incitent mataral white light, hatpen to have its phate rotated into parallelisur with tho principal section of the Analyser, then that kind of colomed-light is cul ofl: and the light which comes throngh is therefone coloured, by reatoon of this cutout. Eich position of the Analyser cuts out a different colour.

A pice of quarta 1 mim. thick rotates the phane of polarisation of a phanc-polarisen bum of yellow light thongh abont 223: ant the diredion in which it does so is towards the right, that is in the same direction as the hands of a wath, when the ray is looked at from behind, from polariser towarls analyser: Quart\% is therefore said to le dextro-rotatory ; lnt there are samples of quartz. which lave an opposite eflect, rotating the pane towarls the left; and such samples are said to be læevo-rotatory. Cane-sugar and grape-sugar, in solution, are dextro-rotatory ; fruit-sugar, starch, and alhmen are leporotatory.

The fortunate circumstance that the rotatory dispersion (the diflerence letween the amounts of mation for the different Colours) produced ly quartz is the same as that for cane-sugar and glycose, enables the strength of solutions of sugars to be approximately determined by means of a Saccharimeter.

A Soleil's saccharimeter is male up of the following parts:-
(1) A Nicol's prism, achromatised ; this polarises incilent white light in a vertical plane.
(2) A Biquartz: this is a dise of quartz, made up of two semicirenlar halves, of equal thickness and of equal hut opposite rotatory powers. Their thickness is so adjusted that they rotate the Plane of Polarisation of incident greenish-ycllow plane-polarised light through 90', in opposite directions: other colours more, others less, Alter transmission, the greenishyellow component of the incilent plane-polarisel white light is polarised in a horizontal plane.
(3) A Liquid-holder, a tule or vessel to luhl a thirkness of 10 cm . of the liquid to be cxamined.
(1) Λ Compensator. Tlais is practially a slah of quartz of adjustahle thickness. Therr are two wedges of quart: of which one cem he stipped ower the wher more or less, and the
 controlled by a serew and moasmed by at Vemier and soate. When the zero of the vernies conincides with the zero of the seale, the thickness of the quarte is just such as to rotate the phane of polarisation of the stme greenish - yollow light throngh 90°; and in doing this it undoes the ellere of one-hall while it doubles that of the other laalf of the bipnartz, No. 2. But in hoth cases it brings the plane of l'olarisation of that greenish-yellow light back to the vertical.
(5) An Analyser, generally a Nicol's pism.
(6) A Lens, to make a distinct image ol the biquart\%.

We bill the liquid-holder with water ; we set the vemier to zero; we fous the lens on the biguartz; and then we turn the analyser romd until a particnlar colom, between red and haw and rapidly sharling off into eilher, eomes to fill the fiell. The appearance of that colonr shows that the amaser is then parallel to the plane of the greenish-yellow light, for it then cuts that colour out of the incirlent white light. Both halves of the biquartz then appear of the same colour.

If now we replace the water by the lignid to be tested, the two halves of the biquartz cease to appear ol the same colour: then we alter the thickness of the Compensator until they do. If the compensatnr have to be thimned, its etfect is the same as that of the liquid tester? ; if it have to be thickened, its effert is opposite; and therefore we must know beforehand whether the compensator is made of levo-rotatory or of dextro-rotatory quartz. This we may find out by using it with a solntion of cane-sugar, which is known to be dextro-rotatory.

The instrment is usually so male that each step on the scale amounts to $\frac{7}{10} \mathrm{~mm}$. in change of thickness of the quartz of the compensator' : and with the aid of the vernier we may read to $\frac{1}{100} \mathrm{~mm}$. A thickness of 10 cm . of water, containing 1 grm . of diabetio sugar per litre, is equivalent to a thickness of 0.342 mm . of right-handed quartz or to 3.42 steps on the scale, and so on, approximately in direct proportion; so that if the thickness of the compensator have to be diminished ly say $10 \cdot 26$ steps on the seale, this shows that the solntion of diabetie

CIIAPTER YIII

EIECTRICTTY

Tear shbject ol Electrimity las been described as one in which it is not possible to mulerstand the simplest experiment withont understanding the whole subject : and to this it may be added that the whole subject cannot even ret be said to be itself clearly understood. Then, more than this, the langnage of modern Electricity is based upon a reasoned and systematic way of looking at the suloject from the point of view of precise measurement of Electric Forces. The results obtained in this department of Physics cannot he properly appreciaterl without having followed up a train of reasoning somewhat mathematical in its character. On the other hand, the facts with which it is of importance that the Student of Medicine should be acquainted may be set before him in a fairly simple manner, provided that the author be allowed to omit here and there the explanation of the phenomena under discussion, or of the origin of the modes of expression employer.

Let the student, then, possess himself of a galvanic cell of any kind. The kinds which he will be most likely to meet with are those known as Daniell's (after Prof. J. F. Daniell of Fing's College, London), Grove's or Bunsen's, the Leclanché, or the bichromate cell. All these will be described presently.

It may, however, first be pointed ont that none of these
is really as simple as the earliw, form of (iatvanie: ('d] mamely, is piese of copper and a piece of zinc, both in acich (say (lilute lydrochloric acid) and not in contact with ome amother (fig zezt); or a dise of copper and a dise of zine separated by a piece of wet cloth

Fig. 230. or of clamp paper.

Tet us first consider, then, the simple form of cell shown in Jigg. 236. A groud form of such a simple cell may lee made with it tin can, filled with a solution of caustic sola, in which a rod or phate of zine is partly immersed, but is not permitted to tomele the tin can. In this the tin can itself corresponds to and replaces the copper plate of Fig. 236. If the zinc lee chemically pure or if it be amalgamated with mercury, * the zine will not be attacked by the liquid ; but ordimary commercial zine will be attacked and dissolved.

The cell, if once put up as described, will appear to lee at rest, and so it is ; it will appear to present mo phenomenon worth note. This is, however, not the case ; for between the parts of the two metals which stand outside the liquid there is a condition of affairs which in kind is the same as that existing during a thumderstorm between the thunder-cloud and the earth, but which in degree differs enormously therefiom. Between a thunder-cloud and the earth there is some kind of a prodigious stress, and the lightning discharcre may partially relieve this stress by means of a spark tearing through a mile or more of air: between the two opposed metallic surfaces of our simple cell there is a similar stress and tendency to the production of sparks,

[^1]but this is so slight that it is dillicult even to detect the tentency. Bear in mind, however, that the difference is one of degree not of kind. Eren with sum la aedl as we have deserited, the student may be able to satisfy himself in a dark room that on bringing the two metals, the copper and the zine or the tin and the zine, in contact with one another outsile the liguil, thare are minute sparks prodnced on makins and on breaking contact, particularly the later.

Now let us turn to the other kimds of cells referved to above. First let us take the bichromate cell. Thais is diagrammatieally represented in Fig. 237. hastead of zinc and colper we have zinc and carbon. There are usually two plates of carbon, one on each side of a central zinc plate, but these are comected torether so as practically to form oue carbon. The zine and carbon platess are immersel in a liquid made of bichronate of potash and dilute sulphuric acid; " and the cell is generally made in the form of a flask, with provision for lifting the zine out of the licuill when the cell

lis. 237. is not in nse. The Leclanché cell is made up ly patting is cylinder of shect zine into a glass jar, fixing up in the axis of the jar a solid rol consisting of a mixture of powdered gas coke, back oxide of mangmese, and shcllac, and filling up with a solution of chloride of ammonium. Sometimes, and specially in cells of very small

Fig. 235. size usch for medical work, a wet mass of chloride of silver or of subsulphate of mercury is used betwecus the two plates (zinc and silver), insteal of any liquid.

The Daniell cell js more complicated in its structure. It presents externally a copper cylinder, which may stand within a glass jar (Fig. 238) or may itself form the walls of the containing jar; then inside this a liquid (a saturated solutiont of sulphate of copper): then there is a porous pot, P, a pot of unglazed earthen-

[^2]ware which allows liguid to travel thromern its walls; then it this porous put at fumtity of dilute sulphuric acid; and lastly, in the very midulle, a rod of zinc. In this cell the

 ment pasents alvantages which we shall anderintand later on In Grovo's eell, we laves all amangemont similas to lfaniell's; but instead of putting the zince rentrally it is usually put ex. terablly, and instead of erpres we have platinum ; futher, instead of a solution of sulphate of conno we have nitric acid. The armagement is therefore, going from withins ontwards, phatinnm, nitric acial, porons jot, dilute sulphorice acid, kince In form (ifove's cehl is usually made flat and Daniell's cylimuical; lout thése forms may lue exchangerl without afleoting the working, except in this respect, that porons pols are somewhat more fragile when made that than when made cylindrical. In Bunsen's cell, the artangronent is practically the same as in Grove's, with this difference, that in the lomsen carbon is used instead of the central platinum. In these forms the zinc always comesponds to the zince of Fig. 236 ; the earbon or the platinnm to the copper of that figure.

In all cases the ginc must be amalgamated, clse it will be eaten away, even when the cell is not at work; and in all cases the zinc and the copper (or cartron or platinum) must be kept from direct contact or metallic communication witl one another, else again the zine will be eaten away by the liquid, even though amalgamated. Assuming however that these conditions are attended to, the cell will remain unchanged for a long time (evaporation leing of course always provided for by the addition of water as required); and the copper and

Fig. 239. the zinc outside the liquid will continuously and constantly present a slight tendency to form a spark from the one to the other, hat will at no time actually form such.

Now let us solder to the respective plates of a galvanic cell a couple of pieces of wire, which may both be of copper. Fig. 236 then would assume the form shown in Fig. 239. But this soldering is inconvenient: and in any actual cell the
student will find that in connection with the rine phate or fond there is a "binding-screw," which mity assume varions forms ; and that similaty there is a himdingscrew commeded with the comper or carlon on phatimm of the cell. This binting-serew somes to grasp tighty the end of a copper wire scraped lnight and inserted into the aperture: the sorew is turned down until the wire is held very tight. The wire must be bright, and so must the lower chd of the screw : any dint or oil or any film of oxide will interfere with the efliciency of the apparatus. If then a piece of wire be fitted to each binding-screw of the cell, the wires themselves becone a kind of prolongation of the cell-plates : and if the free ends of the wires be brought near one another, it will le found that there is, between these free ends, a tendency to spark, and that sparls may be observed if the free ends are made to rul) against one another in the dark, provided that the cells are large enough. Jet us then lay the free ends of the wires very near to one another, but not so cluse that there is any actual sparking: and let us consider the state of things in the space between those free ends. There is across that space a condition of stress of some kind; and there is a tendency for this stress to become relieved and to disappear through the passage of a spark. How has this state of Stress arisen? It is not easy to answer the ruestion : energy has been, at any rate, expended in setting it up. What is the source of that Energy? It is the energy of combination of a tritting amount of the zinc, which has been, as it were, hurned up in the cell and dissolved in the liquid; but instead of its energy of combination leing liberater as Heat (as it would have been if the zinc lad been put alone into the acid) it appear's as the enerery of this stress, or the energy of electric condition. What is it, then, that is under stress between the free ends of the wire? To all seeming it is the Ether, the luminiferous Ether, of which we have spoken before. Clearly it is not the air,
for the same combitions may lue hrought about in a vacmum. 'The Ether, haerlore, is under stress; how it comes to be so is another 'puestion, to which there is as yet no masiner. Allow however that it is so ; then the Ether, heing olastic, endeavours to diselarge this stress and to return (o) its original condition. Petween the two ends of the wites it is as il it han been stretched, or squecoed in from the sides: and the resulit of its

Fis. 2.10 . tendency to return is that there is a tendency to draw the free ends of the wire together. 'This tentency is very small: and witl thick wires it is not recomnisalle; but if very lons slender strips of gold leaf be suspended upon the wires and made to approach one another, it will be fomm that these lave a manifest tendency to fly together. We say then that the Ether succeeds in pulling them together ; but we might also say, looking at what occurs, that the ends of the wires, or the two grold-leaf strips, attract one another: and this is the usual way of speaking on the matter. When we speak in this way we say that the two ends of the wires, or the two gold leaves, are in different Electric Conditions, and therefore tend to attract one another; but this does not really help us forward.

There are plenty of experiments, as we shall see farther' on, in which this relative condition of two opposed bodies or points, or this stressed condition of the Ether between them, may be produced by other means than ly chemical action: and the general rule is that once the opposed bodies are allowed to touch one another the stress may disappear and the difference between the electric conditions of the bodies may vanish. The electrical condition is then discharged or brought to nought, and the phenomena of Electricity disappear. A galvanic cell, on the other hand, is remarkable in respect that if we bring together the free ends of the wires from our cell, there is brought
about is continuous pernlian rondition of the whole space surmonding the wite and the cell. How is the Continuity ol this comdition mamband? One thing at any mate is dear, that it is kept up so lomes as chemical action in the cell is maintained, amb no longer. When the zine is all dissolved. on when the liquid in the cell ean uo louger act on the zinc, all phemomena due to this condition come to an end. We shall presently see what these phenomena are, but may before doing so note that they are in ordinary spech atmibuted to a Current of Electricity. In this view Electricity wonk be something which sumehow pasees along a wire as water passes along a pipe. But the phenomena altrihuted to a Current of Electricity are mainly phenomena in the Field or Region of Space surrounding the cell and wire ; and it is now held that if we had a perfectly conducting wire "conreying a current of electricity," that wire would be the only thing in all the region which was unaffected.

Hence an apparent paradox ; it is not the Atlantic cable but the Atlantic Ocean which conveys the Energy of a cable message ; it is not any cmrrent of electricity along the electrie mains which lights a town or drives tramway cars, but the transmission of Energy through the air, earth, buildings, etc., between the driving dynamo and the criven dynamo or the are-lamps kept aglow. The reasons for this apparently singular conclusion are probably at present too recondite for the reader of this small volume: but there is now practically no difference of opinion among scientific men on this topic.

Let us return to our Cell and its terminal wires, and ascertain what the principal phenomena are which are observable in connection with these.

First let us keep the extremities of the terminal wires apart from one another. Then these wires are in different electrical conditions, and the wire connected with the copper is said to be "positively electrified" in comparison with the wire coming from the zine ; and the wire connected with the zinc is said to be negatively

Chentimed in enmbarison with the wire emaning form the (a川rer. Lat it be ohserved that, this is a merely conven-

 in the pardice of scimatife ment, to nee these terms in this semse. Now let us comnect hese wime ; phenor mena are set up, mostly in the smmonding Fiadn, which we are in the habit of athilnting on_{a} a "eurrent" of Electricily. Pat if Electricity is supposed to "flow," it is matural to say that when a path is provided for it, it llows from what is positively electritied to what is negatively electrified ; and conserpucntly our so-callud Current is sail to llow, along the wire be it remembered, from the (+) copper to the (-) zinc terminal of the cell. But further, it is said to flow in the liquid of the cell, from the zinc plate to the conper

Fig. 241. (or other') plate, and thus to perform a complete circuit. It is clear that the "current." whatever that may be, does exist in the liquid, for the liquid acts in relation to the surrounding region in exactly the same way as a portion of the wire would do if tumed round so as to point in an opposite direction ; and phenomena occur within the liquid which we shall consider presently: But in all this we must not forget the arbitrariness of our language: we do not know what flows; we do not know that anything flows; we do not know in what direction any Electricity flows, if there be any flow of Electricity at all. It is agreed to speak of the "current" as "flowing" in the directions specified; no more. The language used bears the impress of a time when Electricity was believed to be something which could flow, could be accumulater and condensed and so forth; and even now it is hardly possible to advance a step withont making use of terms which imply some such conception. Let us then speak freely of a Current of Electricity flowing, and of its flowing in a particular direction along a wire, that is, from the
('opper (or carbon or platinmm) termimal to the Zinc ter minal of the battery or cell.

We may wish to change the direction in which the cnrrent. is lowing in a given wire. We might efleet this by disemmed. ing the wire from the batery and joining its ends up with the opposite terminals. But it is more convenient, usuatly, to nse a Commutator. There are numerous forms of commatator; but we ned omly descrithe ono of these. In Fig. 242, A is a brass phag comerted by wire with the copper of the battery: B is another, comected with the rinc ; C aml I) the same, connected with one anolher : and E is another. C and I) have a hinding serew (f connected

Fig. 2ta. with them by a wite: E has another, F. Across from AB to ClED there lics a pair of strips of metal, which ean be rotated together romel A and B so as to join $A C$ and BE, or else to join AE and BD, at our pleasure. In the former case the current runs in the direction +ACDG -FEB - ; in the latter it runs in the direction $+\mathrm{AEF}-\mathrm{GDP}-$. It will thins be seen that the direction of the current along the cirenit wite between F and G is diflerent in the two cascs.

Whenever we lave anything which is said to form a current, there must be room for Tariations or Differences in the rate of flow. In the case of a current of Water we say that the current is one of so many gallons per minute, or of so many grammes or culbic centimetres per second: in the case of Electricity, a current which is twice as strong as another is said to be due to the passage or Flow of twice as many "umits of electricity" per second. This is an expression which the reader will not at this stage understand ; but he will find it again when we come to the phenomena of Electrostatics. For practical purposes he will, however, note that the practical Unitstrength of current is the strength of that "current" which is supposed to "flow" when the particular Unit of Electricity known as a "Coulomb" is supposed to take one second to pass any given point ; the Practical UnitCurrent is a current of one Coulomb per second; and such a current is known as a Current of one Ampère. But we may obtain an idea of the Ampire
withont trombling omsolves with the (ombomh, Lat us takrean orlinary averag pint Daniell cell and conne its lemminal bimeng semews lay mans of a thick finece of wire ; hae ('mment passing along that wire will hate a shought engal tw abont Ampere if we take four such cells, and if we finst comaret all the zines forgether ancl all the colphers togethore liy thick wires and then comneet the comjoint \%incs with the comjenint coploces ly a thick wire, the eurrent flowing along that thick wire will lave a strength abont equal to one Ampère. Thus currents viry in strength, and the strength may bre measured in Amperes; the durent which kecps int arc-lamp alight may be of sity 60 Amperes: that which kecpes a galvanocautery wire aglow may lee of saly 25 Anpires; that which passes through inn electric incandescent lamp of 16 candle fower may le one of, say, from $\frac{1}{2}$ Ampire to 2 Amperes; the currente passed liy the medical man through the hrman body may he say from 3 to 300 thousandths of an Ampere, or milliamperes; the currents used by the telegraphist may liave a strength of say one-sixtieth Ampere: and a current sufficient to work a telephone may lee say one sixty-thousand-millionth of an Ampire. But these strengths are all inferred from the phenomena to which the current gives rise ; the strength of a current, in Amperes, is measured by its effects.

The principal Effects of a Current are the following :
(a) Production of Heat in the circuit, always
(b) Proluction of Light, in particular cases.
(c) Electrolysis.
(iv) The production of a Magnetic Field :-
(1) The action of Currents upon Magnets.
(2) The action of Currents upon other Currents.
(3) The action of Currents upon Soft Iron.
(c) Physiological Effects.

lat us take a phee of ery thin phatimm wite and led us commed this with the temmats of a cell on battery of erlls: fom example we may hring up a pain of thick coprer wires from the eell or hathery and make then free ends approwh one another, and then lay our shont piece of very thin platimm wire across these fiee ends. The little piece of platimun wire hecomes warm or hot. It may becone white-hot or may even melt. The stronger the enrent, the hotter the wire beromes: and for a given piece of such wire the law is that a current of twice the strength will produce four times as much Heat in that wire in a given time; one of three times the strength will produce nine times as much Heat ; or generally, the strength of the current is proportional to the square rout of the quantily of heat produced.

Suppose our little piece of phatinum wire formed is small hop, projecting from the end of a rod of gutia-perchat in which the two thick copper wires connected with the platinum wire and with the battery were separately embedded, and that the loon' was dipped in water and the current passed. Heat would be developed in the wire as before, but it wouk le taken up by the water; the water would rise in temperature, and with a

Fig. 243. sufficient current might even be boiled by this means. The amount of Heat lost to the water might readily be measured by finding what its rise in temperature was: and the ruantity of the water we are supposed to know: so that if we have say 60 grammes or 60 cub cm. of water raised $5^{\circ} \mathrm{C}$. in temperature by a given current in one minute, and raised 5° C. by another current in 4 minutes with the same apraratus, we know that the former current has twice the strength of the latter, because in a given time it produces four times as much Heat.

Of eondse for exerobate work wi: wonll have lo allow for the foss in houth abses by Radiation of heat from the heated water ; but, wo more not concerned with this at the gresent monent.

It will not be diflicult to maderstand that if we can find mons to regulate on current we can regulate the temperature we ohtain in the thin wire, and that we (an thus leat a spinal of phatimm wire only just enomgh to hatch ann egry romul which it is phaced, os enomgh (o) enok it; that we can heat a loop of platimmm wise only mough to make it slowly char its way throngh a tissue romed which it is placed and throngh which it is drawn, or can heat it sufliciently to make it rapinlly cut its way through at a white lieat ; that we can heat a domeshaped spiral of platinum wire to a dull-rerl leat, and apply it for clrecking the ouring of 1,loorl ; that we can fell a tree loy pulling through it a phatinum wire kept aglow by a sufficient current. In all these cases the amount of Heat produced is proportional to the square of the Strength of the Current actually passing.

But one is apt to surpose, when one sees such a little loop or piece of wire at a red or white heat while the rest of the apparatus appears cool, that the Heat is only leveloped in that glowing bit of wire, and nowhere else. That would, however, be a mistake. It is a matter of proportion. Heat is developed all round the circuit; some-and this sometimes a very large proportion -in the battery cells themselves; some in the thick wire; some in the thin wire; but generally, the worse as a conductor any given part of the circuit may lee, the more heat will be developed in that part. The thin piece of platinum wire is a bad conductor: it therefore grows comparatively hot. The thick copper wire is a good conductor: it therefore develops less heat.

In an electric fuse we have a worse-condueting part of the circuit made of fusible metal; when the current becomes excessive the heat developed melts the fuse, and the eurrent ceases.

If there be any fritt of the eirenit in which a bad conductor is interphated, the greater part of the Heat cleveloped in the whole cincuit may muler some conditions be dereloped there : never the whole of it, ly any chance. Whenerer, argine, Lhere is a flaw in the circuit, the comation becomes bad at that point, and heat is locally developed when the cmrent passes. 'Thase if in the wiring of a house for electric lighting there be a bat joint in the wites, or il the wire be worlo away or gnawed away at any given point, there will be Heat developed to an mulue extent at the Haw, and the tennperature may rise at that print to such a height ats to set the buildiug on fire. Hence the need for a thorough belief in the danger of electric lighting rather than in its immunity from fire-risk; for it can only be safe if there are 110 thars.

If a powerful electric emrent be passed directly from earbon or metal to the dry human skin, the skin may be bumed and a slongh formed. If it be led to the skin through a wire brush, and the stim brushed, a powerful tingling effect is produced.

We may make artificial flaws in a Circuit, and observe the heating which goes on. For example if we pass a strong curvent through two pieces of earbon in contact, they become hot, eurtainly, becanse they are bad conductors; but if we separate them a little or allow their contact to be very loose, we may see the electric arc light produced.

Again, if in a circuit we make sueh a flaw betwren two carbons (thus practieally produeing the are-light) between two hollowel-out blocks of lime, whieh are non-eonduetors and prevent heat from escaping, we have the Electric Furnace. By this, wilh powerful enrrents, temperatures have been attained and elremical decompositions have been effected during reeent years, which had previonsly not been thought possible. Again if we, still nsing powerful currents, pass the enrent through two masses of metal which touch one another by a loose contact, the point of contact is a plaee of bad condnction and becomes heated ; but the hotter it gets the worse the conduetion becomes, locally, for hot metal is a worse conduetor than cold;
 and by this means, by ntilising the heat developed at the local
 together in mamafacharing imlatis

It will be borme in mind that all this is a question of degree and of proportion: even a flaw must have some Conduming Power, clse the currant womh storn athogether ; hat if it have any, then it acts as il it were equivalent 10 a wire of some ascertamable length aml thicknems, amt of the same comblutimg pown as the flaw.

In order to clear our gromm, we must now devote some pages to a digression on the Combucting Jower and the Resistance of a contuctor, and shall retmon thereafter to the lleat developed in the sircuit, genemally or locally.

Resistance and Conductance.--In a flaw in the circuit, or in a very long thin platinum wire, the Conducting Power (or conductance) is very small: ancl this is olherwise expressed hy saying that the Resistance of the flaw, or of the platinum wire, is very great.

If we had a wire of a perfect conductor, there would be no resistance, aud no heat develned in the wire on the passage of the current; but there is no such thing as a perfect conductor, though some metals when excessively cold have marvellonsly small resistances.

It is necessary that we should have some standard of comparison of Conductances on the one hand or of Resistances on the other. The Standard Conductor would have unit conductance and therefore unit resistance : and it is a column of mercury 1 sq. mm. in cross-section and 106.3 cm . in length. The Conductance of such a Standard Conductor is said to be one Mho; and its resistance one Ohm.

It is more usual to specify the Resistance of a conductor in Ohms than it is to state its Conductance in Mhos. With regard to any particular conductor it is sufficient to know either of these, for the number of Ohms is the inverse of the number of Mhos: and thus
a conductor whose comblutance is 10 Mhos hats a resistance of $\frac{1}{10}$ Olmm.
 varies directly as ils length and inversely as ils crosssectional area.
 transwerse sertion, has a resistame emal to $1 / 0 \div 10630$ Ohns. Thas if it be 1 metre long ($7=100 \mathrm{em}$.) and have a cross-anca

The Resistance of a combuctor also depends on its material, amd is proportional for ench substance to a particular number which las to be fomme by experiment and which is called the resistivity of the smbstance. The inverse of the Resistivity is called the conductivity.

Thus copper is a better conductor than mercury: under simila conditions a current passes throush it 61.60 times as strong as will pass through mercury : its Conductivity is 61.70 times, and its Resistivity $\overline{61 \%}$ times that of mercury.

It is more usual for us to find Thbles of Conductivities than it is to find tables of Resistivities. Thus with regard to copper, for exanıple, the usual datum would be that its Conductivity is 61.70 ; that of merenry being taken as mity.

Let us write the Conductivity as γ; then the Resistance of a uniform conductor of any smbstance is $\{7 / 0 \div 10630 \gamma\}$. For (xample, in platinum the Conductivity is 6.46 ; and the Resistanee of a platinum wire 12 cm . long and $\frac{1}{2}$ mm. in thickness is $12 / 0 \div(10630 \times 6.46)$; then we must find 0 , whiel is $0.7854 \times$ $(0.05 \mathrm{~cm} .)^{2}=0.0019635 \mathrm{sf}$. cin. ; so that the liesistance is $\left\{(12 \div 0.0019635) \div(10630 \times 6.46)^{\prime}\right.$ Ohms, or 0.089 Ohm.

The Condnctivity of purc water is not greater than $0.000000,000025$ times that of mercury. Hence a columm of pure water, I metre in length ($l=100 \mathrm{~cm}$.) and $1 \mathrm{sq} . \mathrm{cm}$. in cross-section $(0=1)$, has a Resistanee equal to $(l / 0) \div(10630 \times$ $0 \cdot 000000,0000 \cdot 25)$ Ohms, $=(100 \div 0 \cdot 000000,265750)=376,319000$ Ohms, at least ; and it is therefore practically a non-condinctor: Gutta-percha offers a resistance far greater than even this.

From this we sere that sulstances of the satme size and fom maty difere vary much in their power of conveying (1) combucting tut electric conrent: some, ats metals, allow it to pass with relatively little resistance: uthers offer mush wisistace, and their comeluctivity is accordimsly smitl.

Honee it current passing along it wire snlliciently coatend with gutta-percha may be prevented from csiaping, and krpit in its path; and in the matumal clectrie charents fomm in at nerve of the body, the neurilemma and the fatty medulla of the nerve phaty the same part, in relation to the comactive :axis-cylinder of each fibril, as the gutta-percha does towards the wite.

I'lie tissues of the body are mostly very bad conductors and ollew high resistances; for cxample, the eycball presents a resistance of about 2500 Ohms, and an equal bulk of bramsubstance about 1600. A pair of needles comected respectively with the terminals of a battery, and with their points apart, will, when inserted into the tissues of the borly, give only an imperceptibly minute current: but if they come upon and enter a bullet lodged in the tissucs, the current-strengtly goes up at once to a high valne, and the current may be de. tected by any appropriate appliance, such as a galvanometer or a microphone.

The human skin when dry, or dried by drying - powder, is a particularly bad conluctor; il it be wetted it conducts much better, and allows current to pass into the deeper structures.

We even find that moist air is a better conductor than dry air: so that the vapour arising from his body adds an element of danger to the position of a person in an exposel place during a thunderstorm, for that vapour affords an easier path for the spark.

Any dust or grease or rust about a galvanic cell or battery may, practically, wholly arrest the flow of current. Hence the importance of clean, unoxidised surfaces.

The Resistances which may be interposed between one point and another on a galvanic circuit, in order to moderate the current, will usually be found in a "re-sistance-box." This consists of a series of coils of wire of known Resistance, measured in Ohms or decimal fractions of Ohms, which are fitted up in a box and so
arranged that the current mity be makle to pass bhrough them all, or through aty desited number of them at will.

Bach of these coils is mathe of insulated Cemman-silver wire, or of an alloy of silver with $33^{\circ} \mathrm{t}$ per cont of platimm. The resistance of the materials is fomm to vary extremely slightly with the changes of temprature to which the passage of the ement gives rise. 'The two emens of each soil are lastemed to massive copper rods, and the evil is impdeded in parallin. La the ordinary state of the instrmment fase massive copper rods are comedted to one another loy a massive hrass or copper plug, which "short-circuits" the coil : that is to say, it provides a pith of immenscly less resistance than the coil itselt. When the plug is taken out, the cmront is whiged to pass through the corresponding coil, as at A, Fig. 24. By taking ont the apmopriate phugs we can, with property varying values of the respective coils, give the total Resistance $\mathrm{p}^{\text {nut }}$ into

Fis. 24. circuit a rery large range of values, and thus modify the current-strength to any desired extent within the comprass of the instrument.

Wheatstone's Bridge is an instrument whereby the Resistance of any given conductur can be ascertainel. In its

Fig. 245. simplest form it consists, as shown in Fig. $\because 45$, of a diamond of conductors AB, BC, CD, DA, a cross-conluctor BD with a galvanometer (t, and a comnection AZnChC in which there is a galvanic battery ZuCu. Observe the use of the conventional sign for a galvanic battery in the figure: the short thick lines stand for negative plates (c.y. zinc) the longer and thimer lines for positive (e.g. copper). The galvanometer meculte is at rest when the Resistances in the respeetive arms of the diamond are in the ratio $\mathrm{R}_{\mathrm{AB}}: \mathrm{R}_{\mathrm{BC}}:: \mathrm{R}_{\mathrm{AD}}: \mathrm{R}_{\mathrm{DC}}$. Hence if we know two of the resistances, and have the means of adjusting the thirl to a known extent until there is no current through the galvanometer, we know the value of the fourth.

The required known auljustment of the third arm's resistanee may be effectel by means of a Rheostat or Rheochord. This consists of two cylinders : one of these, C , is metallic ; the other, B, is non-condncting and bears a screw-thread. When the rheostat is intended to offer no resistance, the whole of the
wire is rolled on to the mohalle：rylimder：the earrent then rums from Λ t．，the metallie rylimber（＇and（on lyy I）．As the

ド品ごい。 ＂ylimare l＇is rotatal late tho wire is un－
 ing eylindar li，and the churont has to gass

 fram the manlow of revelationsol the cylinter． ＇llas is lowever a ronerh form of ajparatas．

Another methox is to vary Λ I）aml du： torrether ly menns of is Sliding Contact． ＇The wire from the galymometor is so fittel that it can slip along and toncla any point D letwere A and C ：then the resistances between Λ and B and between B and C being known，tho same ratio $\mathrm{AB}: \mathrm{IB}:: \mathrm{Al}$ ： AC still holds grook in relation to the ressistances．＇The objection to this form of instrument is that the slioling contact causes wear of the wires， and interferes with the accuracy of the

Fig． 247. results．

The use of Resistance－boxes is to be preferred to that of sliding contacts．If，in a resistance hox the successive coils are at $5000,2000,1000,1000,500,200,100,100,50,20,10$ ， $10,5,2,2,1$ Olms each，we can，by taking out the proper phogs，give the resistance of the box containing these 16 coils any value we please from 1 to 10,000 Olms：and we may use such a box as the Resistance between say B and C ．

But we may go farther．Instead of using resistances of fixed value in $A B$ and ΛD ，let us put resistance looxes in these also．It will not lee necessary for us to give these any other values than multiples of 10 ，say 10,100 ，and 1000 Olnns eaclı． Surpose then that the respective resistances of $A B, A D, B C$ are 1000,10 ，and 2784 Olms when the unknown resistance stands between D and C and the galvanometer is at rest：what is the value of the unknown Resistance？ $\mathrm{AB}: \mathrm{BC}:: \mathrm{AD}: \mathrm{DC}$ ； or 1000：2784：：10：27．84：whence the unknown resistance is $27 \cdot 84$ Ohms．We have thus taken our measurement down to two places of decimals，and extended the range of the instrument down to 0.01 Ohm．On the other hand，if BC be greater than 10000 when $A B=\Lambda D$ ，we then make $A B=\frac{1}{10}$ or $\frac{1}{100} A D$ ， and thus extend the lange of the instrument to 100,000 or to 1，000000 Ohms．

In practice these three resistance－boxes， $\mathrm{AB}, \triangle \mathrm{D}$ ，and BC ， are arranged on the same board，and provision is made for the insertion of the unknown Resistance between D and C ：
mul luther, the battery stands betwen A and ${ }^{\prime}$, and the sill rammeter hetwom 1 B and 1 , as in the disgrann of F"ig. 215 Fir. 217 shows how the respedive Rosistanest are gencrally arrangel when the Whenhstone's Briden is make up with resistance-boxes in this way ; and it will he found that this ligure suitstantially nomes with Fis. 245. The resistante in :any aton conresponds of comse with the phess whith have beon tektern out af 'hat arm.

Fig. 2 2ts.

There is. however, another kind of resist-ance-box often to be mod with in medient work, in which the plug has to be put in in order to determine the resistance, amb in which no curcht runs mbess the phig is in. The primeiple of this is illustrated hy Fig. 2 2!. 'Jhe current commen at the sesment 0 , an? it has to aro forwarl from

Fig. 249. the eentral metallio dise. Unless the plus is in somewhere in the cirche, there me no current, for there is then 10 communication between the segment 0 and the central lise: if it be in at the segment 0 , there is no resistance: if it be in at the segment 1, the current has to traverse one of the coils commected with the mumbered segments: if at the segment 2 , two coils, and so on: so that the number of the segment indieates the number of coils traversed. If there are five such circles, hearing respectively $10000-0 h m, 1000-0 h m, 100-0 h m, 10-0 h m$, and 1-Ohm coits, 9 to each, any number of Olms can be promptly prot in eircuit, from I to 99999.

Sometimes very high Resistances are obtained by the use of rheostats of fluid or of graphite, or even of mere black-lead pencil lines on paper.

Branched Currents.-When a current is sent along a branched wire, as in Fig. 250, the current arriving at A is equal to the sum of the two currents leaving A by the two branches: and conversely, the currents arriving at B are together equal to the current leaving

Fig. 250. B. The strength of the current passing along ACB is to the strength of the current passing along ADB as the Conductance of ACB is to that of ADC ; or otherwise, the relative strengths of the currents in
the butuches are inversely proportional to their resuecelive resistances.

 ment, whech as that of Fis. 250, in which the respective m-
 the resperife euremts in the two branches? Jet i be the whrent-strongth in the 8 -Ohn han hand ($2 \cdot 5$ - i) the cumentstorgith in the 2 Ohm banch ; then $i:(2-5-i):: \frac{1}{8}: \frac{1}{2} ;$ anm an solving this simple cquation we find $i=\frac{1}{2}$ Anmere in the S-Ohm hanch ant $\left(2^{2} 5-i\right)=2$ Amperes in the 2 -Ohn batuch.

Suppose we lave to inser in the circuit in piece of apparatus which would be injured by the full currem, we could divert any desired proportion of the current by sending a part of it along a branch or "shunt" of sufficient Conductance, that is, of sufficiently small Resistance.

Suppose we clesirecl a current in AOB to be reduced to a ${ }^{3}$, and that the resistance of ACB was as ljefore, 8 ()hnms: what must be the resistanee of the additional path, that is, of the shunt ADD? We see that if $\frac{1}{1, \pi}$ of the eurrent goes by $A C B$, $\frac{98}{100}$ must go by ADB : therefore the Condnetanee of ADB must be 99 times that of ACB : that is to say, the Resistance of ADB must be $\frac{1}{90}$ that of ACB , or $\frac{8}{6}$ Ohms.

In a Du-Bois-Raymond key, the elurrent is praetically shunted off from a nerve-preparation by being made to pass partly throngh a thiek mass of brass: the share of the eurrent whieh the nerve then gets is inapreciably small. When the key is opened, the nerve gets all the current whieh its resistance will allow to pass.

Currents travel wherever there is a conducting path for them; lienee they affect the more remote parts of the body when applied superfieially. For example, on eleetrifying the face, it may be that the optic nerve is irritated.

After this explanation as to Resistance and Conductivity we may return to the Heat generated in a circuit, or in any given portion of a circuit, on the passage of a current. This Heat is, per second, numerically equal to the Ampères squared \times the Ohms ; that is, on condition that it is itself measured, not in ergs, but in Joules, of 10,000000 ergs each.

Thas the Heat developed in a eoil of wire, whose resistamee is 123 Unms, by a cmment of 7 Ampnotes is $\left(7^{2} \times 12\right)-(19 \times 12)$ rise donles per semond, on 5880,000000 ares per seeond.

There is another mote of stating the same resnlt Which aleserves atfentions. sitppose we have a conductent whose resistance is one Ohm and that the enment pass. ing is one of wne Ampre: then the conductor is in different electrical conditions at its two extremities, for if it were in the same "eetrical condition at both enels no eurrent wonld thow along it. This difference of condition is known as the Difference of Potential, and will he more finly explained later on ; but it is analogous to a bilference of Temperatme in the How of Heat, or to a Dillerence of Pressure in the llow of a Liquid. In the case specified (one Olnin and one Ampere) the two ends of the conductor are said to be umbler a diflerence of potential sometimes called an Electromotive Force or a voltage) of one Volt. The Ohm, the Ampère, and the Tolt are thus closely related; and if any two of then be known with reference to any particular conductor or portion of the circuit, the value of the third may be readily inferred, for the three quantities are related thus:-Volts $=$ Ampères x Ohms ; or Ampères $=$ Volts \div Ohms ; or Ohms $=$ Volts \div Ampères.

Thus if in a given coil whose Resistance is 12 Ohms there be a cnrrent passing whose strength is 7 Amperes, the Difference of Potential under which that current passes is 81 Tolts : for 7 Amp. $\times 12$ Ohms $=8 \pm$ Tolts.

The statement of this relation is the extremely important law known by the name of Ohm's Law.

The Heat produced is, therefore, in Joules per second, also equal to the Volts \times the Ampères ; and it is, further, equal to the Volts squared \div the Ohms.

Problcms.--1. In an ordinary pint Daniell cell, the difference of potential between the two plates, when they are not brought into metallic commomication with one another, is abont

 Ampras $=1 \times t=1$; or as (Volts $)^{2} \div$ ()hnas $=1 \div 4=\frac{1}{6}$.
2. Next, let as put hetwern the teranamls atoner woil of than wire, whose liesistance is say 80 Ohms. The whole Resistance in the cirenit is now St Ohnes ; and the Strengho of the Curment is,
 how much Heat is leveloporl, limst within the cell itself, and secome in the long commeting wire. l'irst, then, within the Cell : the current-strenoth is ${ }^{1}+$ Anprere and the resistaner: of the ecll is 4 Ohms; the Heat in the cell is therelore (Amperes) ${ }^{2}$
 seconl. Secondly, in the Wire; the enrent-strengtli is Anpere and the resistance of the wire is 80 Ohms; the Heat in the wire is therefore $\left(\frac{1}{5 . t}\right)^{2} \times 80=\frac{1}{8} \frac{1}{2}$, Joule per secent $=118369$ ergs per second.
3. What is the Difference of Potential between the two ends of the connecting wire in the last exanule? We know that Volts $=$ Amperes \times Ohms. 'The difference of potential in pluestion is therefore $\frac{7}{8}$. Amp. $\times 80$ Olms $=\frac{8 \pi}{8 \frac{1}{2}}=\frac{20}{2} \frac{0}{1}$ Volt. The whole of the potential-difference obtainable from the sell (one Volt) is not available for the service of the conneeting wire, for a part of it is absorbed in driving the eurrent throngh the cell itself.
4. In a Grove cell the internal Resistance, that of the cell itself, is smaller than in a Daniell of the same size, being about $\frac{1}{5}$ Ohm for a pint cell ; the Voltage is generally about 1.8 Tolts. If we connect the terminals of a pint Grove cell by a short thick bit of wite the curvent is 1.8 Volt $\div 0.2$ Ohm $=9$ Amperes; the Heat developed per seeond is (Amperres) ${ }^{2} \times$ Ohms $=9^{2} \times \frac{1}{5}=16 \cdot 2$ Joules, or 162,000000 ergs. If we again use our $80-\mathrm{Ohm}$ eoil of wire, the total Resistance becomes 80.2 Ohms; the Yoltage is 1.8 Volts, as before ; the eurrent-strength is Volts \div Ohms $=\frac{1}{s v^{2}}$ $=0.0224$ Amperes; the Heat developed within the Cell is (Ampè $\left.{ }^{\circ} \mathrm{es}\right)^{2} \times$ Ohms $=(0.0224)^{2} \times 0 \cdot 2=0.0001$ Joules per second ; the Heat developed in the Wire is similarly $(0.0224)^{2} \times 80=$ 0.4000 Joules per second; and the Difference of Potential
between the ends of the connecting wire is Amperes \times Ohms $=$ $\left(s^{1} 02 \times 80\right)=17955$ Volts.
5. Supposing we have a C'ell whose internal resistance and voltage we to not know; hut we have a set of coils whose Resistances we do know. 'lake three of these, say 5 Ohms, 10 Ohms, and 20 Ohns. With the aill of these the problen is not at all beyond the reach of calculation, proviled that we have some means of measuring the strength of the Current directly in Amperes, as by memis of instruments known as Amperemeters or Ammeters. Let the result of on measurcments be, then, that with tho orom coil interposed between the terminals of the cell, the current is 0.24 Amperes: that with the 10 -Ohm coil it is 0.133 Amperes; and that with the 20-Ohm coil it is 0.0706 Amperes. If we set this out in an algehraical form the problem becomes simple; let r stand for the Voltage of the eell in Volts: let ω stanll for the intermal Resistance of the cell in Ohms ; then we have the threc equations $\frac{v}{\omega+5}=0 \cdot 24$; $\frac{\frac{r}{x}}{\omega+10}=0.133 ; \frac{r^{r}}{\omega+20}=0.0706$; and from these cymations the stment's knowlelge of algebra will readily emable him to find that $v=1 \cdot 5$ Volts and $\omega=1 \cdot 25$ Ohms.
6. Suppose we had a Daniell cell, 4 Ohns and 1 Volt as before; and we want to reduce the current to 2 milliamperes, that is, to $\frac{2}{100}$ Amperes: what amount of resistance must we interpose between the terminals? As before, Amperes = Volts \div Ohms; that is, $0.002=1$ Volt $\div 500$ Ohms ; so that the whole Resistance must become 500 Ohms, and the resistance interposed must therefore be 496 Ohms.

We may have, instead of a simple wire between the terminals of a cell or battery, a circuit in which the different successive parts present differing resistances, as for example, an alternation of thick and thin lengtlos of wire. Then the heat produced in the whole circuit is distributed among the different parts of the circuit, to each according to its Resistance.

If a wire were a Perfect Conductor, it would present no resistance, and there would be no heat developed in it ; and the conducting wire would thus be unaffected by the passage of the current. The Heat developed in any given portion of a circuit is therefore a consequence of the imperfection of the conductor employed.

We have, in all the above, assmmed the Gmment to do nothing hot thasform all its Energy into Heat. But the lommula, lleat $=(\text { Amp. })^{2} \times$ Olms $=$ Amp. \times Volts $=$ $(V o l t s)^{2} \div$ Ohnins, also reler, nome loroadly, to Energy in any of the forms which it may assmme. Jf the current be made to drive an electromotor, the electromotor is equivalent, from the point of view of the lattery and circuit in general, to a wire presenting a certain Jesistance and a certain biflerence of Potentials between its extremities; and the only diflerence in the situation is that the motor more or less completely transforms the Energy supplied to it into the energy of Work done by it, instead of transforming it all into Heat.

It may be proper in this place to explain what the measure of Curent is for commercial purposes. It is not the Strength of Current, the Amperes; this alone would not tell ns how much Energy the consumer had taken from the eleetric mains; and from the point of view of the electric lighting company it is a matter of indifference what may be the special forms of apparatus employed by the consumer. What interests them is low much Energy they have supplied him with, and this is what, by one means or another, they measure in the cousumer's meter. The rate of consumption of Energy in the consumer's apparatus is equal, when measured in Joules-per-second, to the product of the Amperes into the Volts. Consequently, by one means or another, the meter must register both the Ampères and the Volts under which the Energy of the electric current is supplied. But the meter monst do more than this; it mast also register the Time. The product (Amperes \times Volts \times no. of Seconds) gives the number of Joules of Energy taken up from the circuit. The commercial unit of Electrical Energy is 1 Ampère $\times 1$ Volt $\times 3,600000$ seconds $=3,600000$ Joules $=1000$ Ampère-Volt-Hours. It does not matter how this product is made up, whether by Strength of Current, or high Voltage, or longth of Time, or all or any of these; whenever this product las been made 11p, the commercial unit of Energy has been consumed ; and if, as is said, "the unit of current" costs 5 d , the sum due is then 5 d .

The same thing is often expressed in another form, namely:the unit is equal to 1000 Jonles-per-second continued for an hour; but the phrase "Joules-per-second" is abbreviated into "Watts," a Watt being the unit of Activity on the so-called
" l'ractical Electromarnetic" system, in which the Conlomb, Annere, Ohm, and Volt serve ass mits systematieally mehted to one another: that is, the Wath is an activity of $10,000000 \mathrm{mg}$ g per second. Then the commereial mit is cmal to the result of an Activity of 1000 Wath, kept up for 1 home : it is said to be cipal to 1000 Watt-honrs or to one kilowatt-hour. On the Continent of Europe the mit in use is not 1000 Watthours, but 100 ; the unit is therefore a "hektowatt-hour," not a kiluwalt-hour.

(h) Production of Lignt by a Currentr

(1) Gaps in a circuit.- We have alrealy alluded to the production of the now well-known electric are light, In this, in air, the prsitive carbon wears away about twice as fast ins the negative: so that contrivances lave to be resortel to for regulating the approach of the carbons towards one another as they wear away. In some cases, as in lantern projection work, it is found expedient to regulate the position of the are by liand: in street lighting the derices employed must be automatic. The temperature attained is about $3500^{\circ} \mathrm{C}$, at which carbon volatilises : and powerful lampis differ from weaker ones in the area of carbon over which this temperature is attained. Area for area, the brightness of the luminous part of the carbon is the same both in weaker and in more powerful lamps.
(2) High temperatures in bad conductors.The temperature assumed by any given portion of the circuit will depend upou the amount of heat liberated in it (measured in calories) ; and it will be greater the smaller the mass of the portion considered, and also the smaller its specific heat. A very thin badly-conducting wire or filament may collect within itself, on account of its relatively high Resistance, a very large proportion of the total Heat developed in the whole circuit ; and then, on account of its small Mass, its temperature may become exceectingly high in a short
time. Whon it is hot it will lose heat ly rudiation and eondmetion on eonvection; lant it will attain a tempherabate at which its losses are balanaced by the continuous supply of Fincrey from the lattery, in the lomm of lleat. 'Ths smaller its ratiating stafeace, or the less air it has immediately arommel it, the less rapid will be its losses, and the higher will its temperature tend to become before equilibrium is reached. A sufliciently strong current, passing aloners a very thin ant shont piece ol platinmm wire, may thus bring that platinum wire bo a red or in white heat, or may even fase it. 'I'hen, of course, when the wire becomes excecelingly hot it enits light.

The earlier suggestions as to the manufacture of small electric lamps were that the current should be mande to pass through a thin platinum wire or a coit of thin platinum wire. These forms of lamp were, however, soon displaced by electric incandescent laniss in which the filament of high resistance is marle up of a carbonised organic fibre such as a bamboo filbre, or-now-ulays-of prepared carbon paste. The Resistance of these tilaments is very great, ranging, in an ordinary 16 -candle lamp, from 16.2 to 181 Ohms.

Suppose the eurrent is so regulated that its actual strength as it passes through the lamp is 1.85 Amperes, and that the lamp is one of $16 \cdot 2$ Ohms resistance; then the Difference of Potential between the extremities of the filament is Volts $=$ Ampères \times Ohms $=1.85 \times 16 \cdot 2=30$ Volts. Similarly if the comrent be 0.58 Amperes and the resistance 181 Ohms, the voltage is 105 Volts. In the former of these cases, the Energy transformed by the lamp is Joules per seeond $=$ Voltage \times Current $=30 \times 1 \cdot 85=55.5$ Joules per second ; in the latter of these eases it is similarly $105 \times 0.58=60.9$ Joules per second. The arerage eonsumpt of Energy by a 16 eandle-lamp may be taken at from 50 to 56 Joules per seeond. The lighting power falls off to 13 or 14 candles in 100 to 200 hours; so that the consumpt rises to an average of 3^{3} Joules per second, per eandle-power.

The whole of the Energy radiated from the lamp does not take the form of Heat, for some of it assumes the form of the energy of Light; but after all this is only a
small percentage, some 5 or 6 per cent at most. Hence it must be borne in miml that an electric incandescent lamp is not ly any means heatless; if immersel in a small quantity of water it may boil the water, through the absorption liy the water of the lleat radiated from the filament ; and if such a lamp he wrappert up in gauze, the sanze may first char, then smoulder, and nltimately take fire ; and disastrous tires liave actually arisen from this catuse. Again, when sueh lamps have to be introducel into cavities of the human body for purposes of exploration, it must lie remembered that quite as much Heat is producel as il the same filament (or one of the same resistance) had been used hare and applied as an electro-cantery. Mischief may be caused by needlessly keeping the lamp alight when introduced into position ; for though the actual white-hot filament is not brought into contact with any one point of the tissues, the Heat is radiatel from it and is absorbed by a certain area of the tissues surrounding the lamp; and any carelessly protracted exposure of the tissues to this influence may result in undue stimulation or inritation, or even in a burn.

Lamps of this kind are very useful for microscopical purposes: for they may be made very small and may be hrought into the focus of the condensing lens or mirror, so as to afford a sufficiently powerful and concentrated source of bright light, in the best optical position.
(3) Geissler-Tubes.-If a glass tube containing air, or other gas, only in very small quantity, that is, at a pressure of only about $\frac{3}{1000}$ atmosphere, have platinum wires fused through the glass and entering its cavity at opposite extremities; then if these wires be connected with the terminals of a frictional electric machine or a battery of high potential-difference, so that the rarefied gas is, as it were, invited to act as a conductor of the current, a very feelbe current will pass through the gas: and the gas will then glow with a phosphorescent light.
'This light depends, in respect of its colour and the lines in its spectrom, mom the nature of the material of the gins. Dany propmats have been made to milise the light producerl by sumb varemm-tubes, "n "(ieissler"s tubes," fon illmmating the savities of the haman body; hot nowadays they are very little nserl, for the light which they produce is but feeble, and they have practically been replaced by the more convenient smatl electric incandescent lamps which are now obtainatble. (ieisslar-tubes are nsually set in action by means of the current from an intuction-coil, which will he describerl later.

In a Geissler-tube, the negative electrole is surrounded by a dark region : and as the rarefaction increases, this dark region lengthens until at length it fills the tube. But the dark region is the scene of a most vehement transport of molecules, repellerl from the negative electronle (or "cathorle"): aml if the negative electrode be so shaped as to make the molecules, travelling always at right angles to its surface, converge upon a limited area of the glass walls of the tube, that limited area will brilliantly shine with a phosphorescent light. There has been discussion during recent years as to whether this is really due to molecules travelling in the tube, or whether it may not be due to Longitudinal Vibrations of the Ether. Professor Röntgen, in working at this subject, discovered that the light from the phosphorescent area of the glass contained some form of apparent radiation which possessed extraordinary properties. It traverses paper, wood, aluminium, but not most metals ; it is not regularly reflected and refracted; oljects are more or less opaque to it according to their physical density; it makes fluorescent substances fluoresce; and it affects a photographic plate. Hence if the hand be held between the phosphorescent vacuumtube and a photographic plate, the rays traverse the flesh and cartilages pretty freely, while the bones are relatively opaque ; and if a needle be embedded among the bones,
it will he very opaque ; so that a shadow-photograph of the skeleton of the lanul may he manle, and will show the position of amy metallic lomeng body:

What the mature of this matiation, if matian it be, is not. yet clear : some think it to be tue to longitudinal waves of the Ether: some thimk it che to and actmal permeation of the thansparent body by molecules from the soure of light: ame others think it contirely thenomenon of stress in the electric fleld. It is remarkahle that similar pesults are producel, in less degree, hy the light from most wrlinary phosphorescent bodies, particufarly from artificial blemde (sulphide of zinc).

(c) Electronisis

When we pass a current of electricity along a wire of metal, nothing particular scems to occur within the wire, in the way of any displacement of the particles of the metal itself. But if we pass a current through a quantity of acidulated water, by immersing in it two platinum plates or "electrodes," which are themselves comected with the terminals of a sufficient galvanic battery, then we find that at the electrode connected with the "positive" * or copper (or carbon or phatinum) terminal of the battery, oxygen gas is liberated in bubbles. At the same time, on the other electrocle, that connecterl with the "nesrative" or zinc terminal of the hattery, hydrogen gas is liberated in the same way, but in volume equal to twice that of the oxygen simultaneously liberaterl at the positive electrode. The easiest and most obvious conclusion to arrive at, on considering this result, would be that the elcetric current has decomposer the water into its constituent elements, oxygen and hydrogen. This was for a long time believed, and it is still usual

Fig. 251. to speak of the decomposition of water by the current.

[^3]But reernt rescarches have made it dear that the exphanation of the: phenomenom has to be songht fon in amothor limection.
'The medmaism of the wedion seems to be somewhat the following. The sulphnie acid, 11 siod, when dissolved in water, broaks up spontaneously into hydrogen anl the group SO_{4}. 'That liqnil, which we call a solntion of sulphuric acid in water, consistu of water as an inert medium, and ol atoms and mole-cule-groups of hyhrogen and SO_{4} miformly disseminated through it, together with some undecomposed molecutes of sulphuric acid. The Hytrogen-atons are positively charged : the SO_{4}-groups are negatively charged. How this comes to be, no one knows. Then the positively-charged hydrogen-molecnles are attracted by the negative electrode, the cathork, the elcetrode connected with the zine; and they are repellen by the olposite or positive electrode, or anole. Similarly the SO_{4} groups are repelled by the cathote and attracted ly the anode. The H atoms therefore drift through the mediun towarls the cathode, and the SO_{4} towards the anode.

When the hydrogen-atoms reach the negative electrode or cathode they give up their positive charge, and they then coalesce to form ordinary hydrogen-molecules, which aggregate to form bubbles of hydrogen on the negative electrode. The hydrogen thas appears to travel with the current from the hattery, from its copper terminal towards its zine terminal. In this the water las taken no part; but if we follow mb the history of the SO_{4}-gronps, we find that these accumulate in the region of the positive elcctrode, and that there is a rearrangement of the atoms there, such that the reaction may be expressed by the chemical equation $\mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{O}$. The result is the liberation of oxygen on the positive electrode or anode, and its aggregation in the same way to form bubbles. But this oxygen is the product of a secondary reaction, not of the direct decomposition of water by the current.

Again, in a solution of chloride of sodium, the chlloride spontaneously splits up upon solution into atoms of chlorine and of sodium, which float equably disseminated in the water. When a current passes, the sodium atoms drift in one direction and the chlorine atoms in another, and accumulate in the region of the respective electrodes; the positive sodium atoms town'ds the negative, and the negative chlorine towards the positive electrode. Where the sodium atoms are in excess, they act upon the water surrounding them, and form soda lyydrate, which remains in solntion, and hydrogen, which escapes. Similarly, the chlorine atoms attack the
patinum wedrobe, corrode it, and lomen platinum chloride; ant il we wish the chlotine to her exolved ats such, we monst nse clectrox es of carbon on some substance whioh is not athacked hy chlorine. It the solution be unc ul chloride of copper, the copper is not deposited mpon the negative clectrode, lom it is

The phenoment of Electrolysis are thas phenomenat of Trilt or how ol previously-dissociated atoms, or arouls of atoms, from the substances tissolved.

As the particles come up to the elcetrodes, they discharge into the rencral circuit the quantities of electric charge witl which they arr, somehow, enclowed; and thus the current is kept up.

It is to be observed that the Quantity of Charge with which a free atom is charged is always the same ; so that the discharge of a given Nomber of dissociated Atoms upon the electrodes is associated with the passare of a given Quantity of Flectricity round the cirenit, and no more. This is as mucle as to say that we may measure the Strength of the Current (that is, the Quantity of Elcetricity which flows per second), ly the quantity of the products of apparent decomposition which appear at the electrodes during a second. The proportion in which the former stands to the latter is given us by Faraday's Law. To understand this law, we must first understand what a Gramme-Equivalent is.

Hytrogen in an acicl can be rejlaced hy a metal to form a salt. In hyohrochloric aeid, for example, hydrogen can he replaced by sodium to form ehloride ol sodium. In this instance, one gramme of hydrogen will be replaeed by 23 grammes of sodium. The 23 grammes of sorlium are thus equivalent to one gramme of hydrogen ; and this quantity of sodinm, 23 grammes, equivalent to one gramme of Hydrogen, is ealled the gramme-equivalent of solium. Similarly the gramme-equivalent of potassium is 39 granunes; and the gramme-equivalent of iron is 23 grammes in the ferrous eompounds, and $18 \frac{2}{3}$ grammes in the ferric componnds. This last statement will be unclerstood when we look at the formula of ferrous ehloride, FeCle, and that of ferric chloride, $\mathrm{Fe}_{2} \mathrm{Cl}_{6}$; in the former, 56 grammes of iron have
 the lather lla ermames of irom have pephaced of of hyatrogron. 'The qiammare Ennivalent, of a motal, then, is the mumber of grnmmes whith will replace ont grambe of llydrogen in

 the momber of grammes of that halogen on salt-ratiele which will combine with one granme of hytrocen. 'Thus, the wramme-equivalent of chlorine in hydrochloric arod is 35.5 grommes, becanse in that acid 35% grammes of ehlorime fore materl with wach granmate of hydrogen.

Faraday's Law is, then, that when a chrent passes, whose strengtl is 1 Amperes, $0.000010,352$ A CrammeEpuivalents of the salt-radicle or loagen are liberater at the positive electrode, per second ; and a corresponding quantity of the metal in the salt acted upon is liberated at the negative electrode.

A current of one Ampere thus liberates upon the pwitive electrode $0.000010,352$ gramme-equivalents of silver per second; that is, 0.001118 grammes of silver per second, or 4.025 grammes per hour. The Strength of a Curent can, with the help of this datum, be mensured by finding out how mueh metallic silver it will deposit from a solution of pure nitrate of silver in a given time.

The process of Electrolysis is utilised in electroplating. The object to be platerl is made in negative eleetrode, or cathode, in a solution of the metal ; that is to say, it is comnecter with the zinc of a sufficient battery, or with the corresponding terminal of any other source of electric current. The metal to be deposited travels with the current towards the negative electrode, that is, towards the oljjeet to be coated.

The solntion tends to become weaker as it is robbed of its metal, atom by atom ; but there is a contrary tendeney acting at the same time, mamely, the corrosion and solution of the positive electrode by the halogen or salt-radicle liberated there. For example, if a current be passed throngh a solution of stulphate of copper between eopper electrodes, there will be a deposition of copper from the solution mpon the negatice copper electrole or cathode, and that eleetrole will be thickened ; but the salt-radicle liberated in the neighbourhool of the positive copper electrode or anole will eause the solution of some of the copper from that electrode, with formation of sulphate of copper in the solution ; this fresh snpply of snlphate of copper is in its
turn subject to electrolysis, imd tho copper, nigimally a pat of the positive electrodr, finds its way thangh the solntion to the negrative electrode, aml contributes to thiteken it. The whole of the positive eleetronte math this he eater awoy, and its suhstane transermen to the opposite chectrode. In this waty the solution, or "hath," amployed in electrophatines is kept saturated; the positive electrode is made of the metal with which the merative alectrodo is to be platal. If the current be too strong, so that the solution is rolmen of its metal too mpidly, the atoms from the positive plectrole have not time to come
 the solution there becomes weak in metal, with eonseguenees detrimental to the colon and consistence of the metal deposited.

There is thus always a well-marked temeney to corrosion of the positive clectrode; and thourl this tendency may in some partimular cases, such as that of patiug above referied to, be netilised and turned to gool accomint, the temdency to corrosion of the prositive electrode is gencrally detrimental, and monst be carefully kept in view.

Let us suppose that we are going to pass a current througls part of the Flmman Borly; and that we are using, as a positive electrole, a plate of zine : and smpose that the positive plate is applien to the skin moistened with salt water in order to improve its comuluctivity, or to any naturally moist surface, such as a mueous membrane; then the salt water or the mucous secretion is electrolysed and chlorine is liberated at the positive electrone, that is, at the zine plate : the zine is attacked, with formation of chloride of zinc, which has a powerful caustic effect on the skin or upon the tissues. In particular cases, this caustic effect may be precisely what is desired, in whielt case a ginc electrode may be employed. Again, where it is intended to insert a nceille into the tissues, the corrosion of the ncelle which is to be insed as the positive electrode may be prevented or minimisel by gilding it; then in the neighbourhood of this needle the nascent oxygen, chlorine, salt-radicles, ete., which are liberated on electrolysis, will produre their own clfects on the surrounding structures, aul will cause coagulation of blood and clacek blecding or condense the tissues. If such a necile be inserted in an aneurism or dilatation of a large blood-vessel, ant if a current be passed so that it enters by the needle and finds its way out by a metallic negrative electrorle placel on some other part of the borly, - that is, if the gilt neerlle be made the positive elcetrote, -the result is that the local liberation of oxygen, clilorine, etc., within the amenism canses coagulation of the blood within the sac, beginuing round the needle, and thus the sac may be blocked mp and the danger of its bursting
avertorl. If, on the ofthe hand, the courent be passerd the

 the elestrolytie atetion is that there is an evolution of bubhters of hydrogen rommet the neodle, and habbles of gits are thas intro. duced dire: lly into the Hoodecircnlation, it result whirlo maty possil)ly have fatal consedumees.

In ilve clectrolysis of tumours, the negative needle is inserted into the tmonom. 'Then the material romm? the needhe beomes alkaline, amb frothy with liberated hydrogen; anl it is l:tpidly disintegratme

Electrolysis furnishes us with in realy means of ascertaining which is the positive and which the negative terminal or pole of a battery. 'Iake a lit of hlotting paper or filter paper, moisten it with a solution of iodide of potassium, and touch it with the wires or needles from the two terminals. At one of the two wires the paper will remain white; at the other it will darken, on account of the liberation of iodine. The wire at which the iodine is liberated is the one comected wilh the positive terminal of the battery; it is the Anode, or the electrode connected with the copper or platinum or carbon of the battery, if the battery be one made up of galvanic cells.

It will be noticed that the corrosion of metal which is causel by Electrolysis, occurs where the current leaves the metal ; thus where electric lighting or electric tramway currents escape and travel partly through the earth, taking advantage of the presence of gas pipes or water pipes to find an easy return path, these gas pipes or water pipes are corroded at every point where the current leaves them to enter moist earth, but are not affecterf where the current leaves the earth to enter the metal. In such cases damp earth acts as an electrolyte; that is to say, it acts as if it were a liguid solution of the salts contained within it; the salts are dissolved by the moisture present ; the atoms travel as they do in a liquid; and thus we may find, in the neighbourhood of the wire or pipe towarks which the current flows, aggregations of metallic sodium or potassium derived from the soluble salts of the soil, or more generally, accumulations of alkaline oxides or carbonates; while in the regions surrounding those points of the wire or pipe from which current entcrs the soil, we find that the soil is acid, and
metal, of whith the wire or pipe has been robled, is fomm, wermerally in the form of oxide, to be showly making its way throngh the soil towarls some point where the enment enters the wire or pipe.

Density of a Current.-In Electrolysis in particular, but also in considering the local development of Heat in a conductor, it is of importance to keep in view the so-called Density of the Current, that is, the number of Ampères ruming across each sq. cm. of a transverse section of the conductor. Where a conductor narrows down, the heating or electrolytic effects are concentrated: and in order to keep then from beingr excessive, a sulticient transverse-sectional area will have to be given to the conductor.

In medical applications of elcetricity, if a current of say $0 \cdot 2$ Ampere be passed through the body by means of large electrodes applied to the skin, there may be no ineonvenience; but if the clectrodes be small, there may be pain, blistering, and eren sloughing produced.

(d) The Production of a Magnetic Field

The action of currents upon magnets, of currents upon other currents, and of currents upon soft irom, is such as to show that the region of space surrounding a current is a Magnetic Field.

It will probably be found easier to understand the bearings of this expression if we give at once a brief resumé of the main phenomena of Magnetism in this place, and then show what the relation is between these and the phenomena of a Current.

In a Magnet, for example in a mariner's-compass needle, there is one line called the magnetic axis, which always tends to lay itself in a particular direction. This direction lies, roughly speaking, North and South. A magnet also attracts soft iron towards the extremities of its magnetic axis.

One end of the Magnetic Axis has a sperial tendency 10) move towards the north, and the other has a similar and corverponding tendency to move towards the south. It is as if a pain of invisible hames laid hohl of its ends, like the hands on the handles of a copying-press, and as if the one of these hands pulled the one end towards the north while the uther pushed the opposite end of the magnetic axis towards the south.

The result is that the magnet tends to rotate into its north and south position, but there is no perceptible tendency to make it clange its position loy any movenent of Translation : the action is confined to a rotatory movement. The Force unon the one end of the magnetic axis is equal to the uprosed Force acting upon the opposite extromity, and the two equal and opposed Forces, acting at the two extremities of the magnetic axis, constitute a couple.

In ordinarily accessible places, therefore, there are Forces tending to work a compass-ncedle round into a definite direction: these forces are called magnetic forces ; any region of space in which these Forces occur is called a Magnetic Field: and the direction in which the rotating couple acts, the direction of the pull-and-push, or the direction in which the compass-needle comes to lie in equilibrium, is called the direction or the Line of Magnetic Force at the place where the needle is situated. Through every point in a magnetic field a line may be drawn, which line represents the local Line of Force: and the local magnetic forces tend to make the magnetic axis of any magnet coincide with the local Line of Force, so far as feasible.

The magnetic field whose forces work the ordinary compassneedle is the Terrestrial Magnetic Field.

It is curious that the strongest attainable magnetic field seems to Hroduce no effect whatever on the brain.

The end of the Magnetic Axis which is impelled towards the north is called the north-seeking or, simply, the north pole of the maguet ; the other end is the southseeking or south pole.

If we cut a marnet into little piees, each of the portions is a lictle magnet. 'l'his ean le carried on indelinitely, and it is believed that the Magnetism of a han of magnelised steel is a property of its constituent molecules. It is also believer that the magnetism of a bar of steel depends "pon its Molecules (which are in trutl already magnetic) heing tumed round within the solid metal so that their similar poles are turned the sane way, and their joint effect then becumes perceptible.

This may be illustrated hy an experiment in which at glass tube tilled with steel filings is had within a coil ol wire throngh which an electrie current is passed : the tabe is shaken so ats to grive the filings some freedom of movement. They then lay themselves lengthwise in the tube ; and ench filing becomes a little magnet. If now the tube be carelully with not to disturb the lilings, the tube of steel filings is fonnd to aet in all respects tha a magnet. But if it be well shaken, so as to knock the liliugs out of their position of parallelisn to one another, and to make them assume matual relative positions which are promisenously diserepant, the magnetic propertios of the mass disappear, althongh if any particular filing be taken out and exanimed, it will be found still to be a minute stecl magnet. The filings in this experiment each correspond to a molecule of the mass of steel in the theory just stated.

There are two ways of describing the action of a Marnet; by its Poles, and by the Magnetic Circuit. The former, by its Poles, is the more usual method.

A Magnet is said then to have two Poles, one at each end of its magnetic axis ; and the Magnetic Forces in the Field, acting upon the magnet, act upon its Poles, which are as it were Faid hold of and the whole magnet rotated into position. Conversely, the Forces exedted by the magnet are said to be exerted by its poles; and the phenomena are explained by means of a form of speech in which certain imaginary attracting or repelling magnetic matter is supposed to be situated at these Poles. And further, these Poles are, in the elementary theory of magnetism, mere points, so that the leading problems of Magnetisin are reduced to the very simple form of problems of attraction to a point at one end and repulsion from a point at the other end of the Magnetic Axis.
'lhis only aproximately correspondes to the facts. If it were an andume representation of the facts we wonld leable to mand ont the region surrounding it magnet by means of Lines of Force, all proceding from one frint and con-

Fig. $25 \pm$. verging nem another, after the fashion of ligg. 252. But if we want to find out how the Lines of Foree are disposed in the neightominood of an aclual magnetie har, we must use a quantity of soft iron flings, lay then on a cart lying thon the magnet, and shake then a little, so that they may leap into positions spontancously assumed hy then ; then we find that each little fiting lays itself in its own direetion along the local Line of Foree, and that the congeries of filings assumes a form diagranmatieally shown in Fig. 253. That is to say, the Lines of Foree do not all start from a common point. There is therefore no such thing as a true magnetie Pole: there is, lowever, a polar region towards the end of each magnet, towards and from which the lines of foree converge and diverge.

Fig, 253.

There may, however, be partienlar constructions in whiel the actual state of affairs inay approximate more or less nearly to that of a true pair of Poles; for example, in a very long, very thin and uniformly magnetised wire: and it is on the whole eonvenient, for simplieity of treatment of the subjeet, to begin by assuming that the magnets of whiel we speak are magnets of this somewhat ideal kind. A pretty elose approximation to faet is in many eases obtained ly assuming tliat a long thin bar has true poles whieh are situated, not at its ends, but at some small distance from each extremity of the magnetie axis.

By a pure eonvention, which happens to harmonise with the eonventional use of the terms Positive and Negative in Eleetrieity, the North-seeking Pole of a magnet is said to be its positive pole; the South-seeking Pole its Negative pole. Then in different magnets, poles whieh are both positive or both negative repel one another: poles which are dissimilar attract one another.

Magnets vary in strength: some are stronger, some weaker than others ; and the Strength of a magnet is measured by the meehanical resistanee which we must
offer in order to prevent it from swinging rombl, when suspemfer, into the north-and-sonth position which it tends to assume. 'Then it magne is supprosed to hatve, in proportion to its strength, a certain quantity of the imaginary Masnetic Matder at each of its poles: that is, a positive quantity at its north-seeking pole, and an equal nesative quantity at its south-secking polc. And next, magnets act mpon one another, if their poles be approximately mere Points, in a way which may be expressed by saying that each pole acts upon every other with a Force proportional to the Strength of each Pole and intersely proportional to the square of the Distance between them: a law which is of the same form as the Law of Cravitation. Between similar poles this force is one of Repulsion ; between dissimilar poles one of Attraction.

In order to have a standard for measurement and comparison we say that a pole is (in C.G.S. measure) a Pole of Unit Strength when it repels an equal pole at a Distance (through air) of one centimetre with a Foree of one dyne.

Terrestrial Magnetism. - The neighbomhood of the Lirth is a great Magnetic Field, nearly uniform within small distances. In this field the Lines of Force have, at each point of the parth's surfaee, determinate directions. They slant in the northern hemisphere downwards and roughly speaking northwards; in the southern hemisphere npwards and northwards. But they are far from being geograplically parallel to one another, so that for example at Greenwich they point downwards, making an angle (in 1895) of $67^{\circ} 15^{\prime}$ with a horizontal line and an angle of 17° to the west of north: whereas at Valentia on the west coast of Ireland they make an angle of $68^{\circ} 45^{\prime}$ downwards and $22^{\circ} 11^{\prime} 54^{\prime \prime}$ to the west of north. The local angle which a compass-needle makes to the west or east of true or geographical North is called the Declination: sailors eall it the Variation. The downward or upward angle made with a horizontal line is called the Inclination or Dip. An ordinary mariner's compass is weighted so as to prevent the needle from dipping downwards; but there is an instrument called a dipping compass in which the object is to allow the needle to dip, so that we may ascertain what the inelination is. In this instrument the needle is poised on a horizontal axle; and it is turned round on a vertical axis until the dip of the
needle atlains a maximum: the magnotic axis of the needle then fies alonir the local Lines of Foree, and this contrivance then shows the magnetic nordh and south as well as the amount of the Jip.

At any place a vertical phane parallel to the Lines of Force is ealled the "Magnetic Meridian " at that place. In pliysical maps of the enth we find irregular lines marked Magnetic Parallels and Magnetic Equator. 'The Magnetic Equator is a line at every point of which the dip is efual to zero, so that the needle lies horizontally after magnetisation if it lay horizontally before being magnetised ; and the Magnetic P'urallels are lines joining localities at which the Dip is equal. J'luese lines are far from eoincilling with the geographical Equator and parallels of latitude. As we near the Arctic or Antaretic Poles, we find the magnetic parallels beeome very inregular curves, and the needle points to their Centre of Curvature. This gives the impression that these eentres of eurvature are margetic poles of the earth : but a true Magnetic Pole of the Earth is a plaee where the needle stands vertical, the dip being 90° there: and there are only two such points, one in the Arctic, one in the Antarctic region.

All the magnetie data or "magnetic elements" of any one place undergo continual changes or variations: the magnetie equator and parallels are always shifting, the magnetie meridians twisting, and the strength of the terrestrial magnetic field varying. Some of these variations are rapid, some are very slow and take ages to aecomplish their course: some depend on the relative position of the sun and moon : some upon the physieal condition of the sum.

In a good many forms of apparatus it is, as in galvanometers, of advantage to mask the Earth's Magnetie Field, or more or less eompletely neutralise its efteet upon a magnetic needle. This will enable a given magnetic needle to be defleeted from the magnetie meridian by a less powerful foree. This weakening of the field surrounding the galvanometer-needle may be aeeomplished by bringing another magnet, with its north pole lying north, to an adjusted distance above the galvanometer needle, so as almost to neutralise the earth's directive foree; or by eoupling together on the same suspending thread two almost equal magnetised needles with their poles opposed. If the two needles were exactly equal and had their magnetic axes parallel, the system would be praetically unaffected by the earth's direetive aetion. Sueh an arrangement is said to be "astatic."

The reason why a magnet with its north-seeking ol positive pole lying North tends to neutralise the Earth's directive forees is this, that the Earth itself is really a magnet with its positive
pole lying to the South; for its positive pole is its Austral or Antarctic, not its Antarctic Pole. Then the linies of foree due to the Farth, and those dne to the neutralising magnet, are opposed in clirection.

Magnetic Circuit.-Refer again to Fig. 252. We see there that the Lines of Force in the immediate neighbourhood of the magnet appear to emerge from one end and to return to the other end of the Axis. But this would be an incomplete view of their relations. Let us assume an ideal magnet of some appreciable thickness, a magnetised iron bar, perfectly uniformly magnetised throughout: then the lines of force would all emerge at one and and return, by a more or less ample sweep, to the other end of the

Fig. 254. bar; but they would also be continued through the bar, so that each Line of Force forms a complete closed circuit, partly in iron, partly in air. Then the Poles of such a magnet would be the flat ends, at which the Lines of Force pass from air into iron or from iron into air ; and the Lines of Force would have directions such as those shown in the diagram, passing from the positive to the negative pole in air and through from the negative to the positive in the iron itself.

If a little magnetised steel filing were laid in the neighbourhood of this magnet, it would act as a compassneedle does in the neighbourhood of the earth : it would come to lie along the Line of Force passing through its Centre of Mass. The positive pole of the filing would come to lie as far away, along the line of force, from the positive pole of the magnet as it can ; and the negative as near to the positive pole as it can.

There is no limit to the distance at which a magnet acts ; there is no point, however distant, at which Lines of Force from any given magnct cease to appear; but of course at distant points the field of force due to any particular magnet may be so exceedingly feeble that we have no means of detecting it. At
reasomaly elose puartors, howevre, we may detect the wistente of the Magnetic Field of one misfort hy the einconstanoer thet another magnet temes to berotated intu the direction of i.he limes of Fones of the lisst ; one ol its proles is pmlletl, the
 stresses thm strans in the Ether. The extont to which smeln
 its nommal north-ant-sonth position will depent njon two things; (l) "ןon the local "strength" or "intensity" of the magnetic fleld in which it is swong ; ancl (2) mpon thr strength of the detector-macrnat's ow'l poles, together with, the amomit of leverge provided liy its ereater or smallas length. 'I'hese two latter hatat may often be taken jointly; we may not know the actual Distance between the "poles" of the letector-magnet or the Strength of its poles, and yet we may know the moduct of these. 'Jhis prodnct is callerl the magnetic moment of a magnet; and for a great many purproses itais all that we neel know concerning a magnet.

Then if we assume that the magnet is uniformly magnetised thronghout, so that any little lit of it would be preeisely like any other little bit, of the same size and shape ann ent out of the magnet in the sane direetion, we may divide the Magnetie Moment of the nagnet by its Volume and arrive at the "Magnetie Moment per mnit of Volume," say [er" enls. cm. ; then we eall this quolient the "intensity of magnetisa, tion " of the magnet. This ought to be unilorm throughont a bar magret: if it were, all the north and south poles of the respective portions of the magnet (which would become manifest if the magnet were ent across into pieces) will completely mask each other ; but generally there

Fig. 255. is a failure in this respeet; and this may go so far that there is actually a reversal at some spot, where south poles may face sonth poles or north poles north, and thus we may have "secondary poles." In such a ease the Lines of Force will be complieated alter the fashion indieated in Fig. 255.

The next case of importance is that of a very thin slice cut transversely out of a uniformly magnetised thick iron bar. Let AB be a section of such a

Fig. 250. slice; then the Lines of Force are as shown in Fig. 256. It will be understood that a larger diagram would better show that every Line of Force takes a sweep into space
and leturns, forming a closed circuit throngl the slice of iron. Thase from near the adges twon shatply round and return: thase from nearer the middle may take bery wide swerpe before they retmo. The face of the dise lying towards N is its positive face, and that lying tomards is its negrative.

Now we come upon an extremely important proprosition, which is the comecting link between Electricity and Magnetism ; that if we take a loop of wire, of the same size and contour ats the Magnet-slice or dise of Fig. 256 , and pass round that loop an electric current, there will be, around that loop, a Magnetic Field of exactly the same form as that shown in Fig. 956 ; and if we use a current of suitable strength, the Magnetic Field due to the Current will be identical in all respects with that surrounding the Magnet-slice or disc already referred to. And further, if instead of a single loop of wire we use a spiral of wire, whose ontline shall correspond with the outline of our thick luar magnet, Fig. 254, the magnetic field due to the current will be precisely the same as the magnetic field of Fig. 254. With this difference, lowever, in both cases: that whereas with an iron or steel magnet we cannot get inside the metal, the loop or the spinal is open, and we can ascertain that there is a Magnetic Field in the interior ; so that the Lines of Force do truly form Closed Circuits, as is alleged.

An electric circuit may thus be said to be a particular form of magnet: if it is a mere loop, it is like a magnetisel disc, with a positive and a negative face; if it is a spiral, it is like a magnetised bar, with a positive and a negative end. If the current be stronger, the circuit corresponds to a stronger magnet; if weaker, to a weaker.

Attention to this las enabled a Magnetic System of Electrical Units to be devised, which, with some modifications, has led to the adoption of the Ohm, the Volt, the Ampere, etc., witl which we are now acquainted.

Since a simple circuit bearing it chrent corresponds, as a whole, to the mamnetised dise of Fig. 250, it follows that the Cirenit as a whole has itself a positive on northseeking face and a negative or soutli-sceking fiace, and that it tends to lie, if it can turn into that position, with its lices marnetic nortl and south. Which, then, is the Positive Fate of the circuit? 'The answer' is that an observer looking at the positive face of the circuit, if he could see the current, would see it go round the circuit in a direction opposed to that of the hands of a watch.

Then, the student will see that if Fig. 250 be taken to represent a circuit-current, with its accompanying lines of force, all looked at edgewise, the current must be going away from him where it crosses the plane of the paper at B, and approaching him at A. He will also see that a magnet-needle, which always tends to lie along a Line of Force in the magnetic field, will turn so as to lie at right angles to the wire, with its north prole driven in the direction of the arrows in the figure.

The action of Currents upon Magnets,-If we now confine our attention to any particular small part of the circuit, namely, to so many inches of wire ; and if we bring that part of the circuit near a magnetic needle; that needle will tend to lie across the wire if there be a Current in the wire, and its north pole will be deflected in a direction which indicates in which direction the current is flowing in the wire. This direction may be remembered by the following rule, which appears to the author to be the simplest means of calling to mind the relation in question which he can lay before the reader. Hold a penholder in the hand, the right hand, in the usual way; the pen points in a certain direction, the direction of the natural flow of ink in the pen, towards the point of the pen ; suppose that the penholder represents the wire, and the direction of the flow of ink in the pen, towards the point, the direction of the flow of current along the wire. Then
instead of allowing the thumb to lie stretehed along the penhokter, lay it across it. 'The thmmb then represents the magnet as displaced by the influence of the current : the thumb-nail rejresents its "marked" or "north-seeking" end. When this is mukerstood, the penholder maty be laid asite amd dispensed with; and the relation may be hronght to mind ly simply laying the thumb across the forefinger of the right hand ; then the forefinger may represent the Current, flowing in the direction in which the forefinger points, and the thumb the Magnet, with its north-seeking end represented by the thmmb-mail. With the thumb still lying across the forefinger, these relations may, if convenient, be exactly reversel, so that the thumb represents the Current, flowing towards the thumb-tip, and the forefinger the Magnet, with the finger-nail marking off its north-

Fig. 250 seeking end. The figure will also explain this relation (Fig. 257).

In the Simple Galvanometer, or Galvanoscope, used as a lecture-table apmatus for cemonstration purposes, the wires are arranged as shown in Fig. 258. The mag-

Fig. 258. netie needle NS is poised or suspended in any eonvenient way. The wire from a battery is brought first over the needle, then unter it, and back to the battery. A key serves to close or eomplete the circuit when desired. The wires, which lie in the same vertical plane, are brought round until they eome to lie in the magnetic meridian, that is, in the same plane with the magnetie reedle in the position whieh of its own aecord it tends to assume, lying magnetie north and south. When the wires and the needle are in the same plane, not before, the current is turned on by completing the cirenit. If the relations be those shown in the figure, the north-seeking or N -marked end of the magnet is, by the part of the current lying above the neerle, turned into a position above the plane of the praper in the diagrann; and by the part of the current lying below it, it is farther driven in the same direction.

The doflerdion induced maty thas be made to serve for the detection of a Current, passing through the wire: ims tha efliect will be multiphied if insteat of one loog of wire th in the figure, we fit up at coil of insulated wire, so that the current may circulate several times fomad the needle. Each turn then poduces its omon rlieet ; and feebler currents may le detected with a coil thath with a simple loop of one thrn.

But the deflection may also be made to show the strength of the current. 'The greater the aflection, the greater the strength of the current: a feeble comrent will cause a comparatively small deflection as against the pull exerted by the Terestrial Magnetic Fied ; a stronger one a greater.

Suppose two persons take hold at the same time of the two handles of a copying-ness, and try to turn the handles in opposite directions; the position assumed by the handles of the copying-press will be something intermediate between the positions into which either person conld have brought the handles if unresisted. 'I'he two Conples are then in Equilibrium. When the action is of this kind, we have two cases of practical value: (1) the Forces are at right angles to the natural position of the needle, in which case the current is proprontional to the tengent of the angle throngh which the needle be-
 comes deflected in the passare of the current: thus, if BAC be the angle of deflection from the magnetic meridian AB , then if BC be drawn at right angles to $\Lambda \mathrm{B}$, the current producing the deflection is proportional to the ratio $\mathrm{BC} / \Lambda \mathrm{B}$: and (b) the case in which the Forces acting are always at right angles to the actual position of the needle, in which case the
1ig. 259. current-strength is proportional to the sine of the angle of deflection, that is to the ratio $\mathrm{BC} / \mathrm{AC}$. These two cases are utilised in the Tangent Galvanometer and the Sine Galvanometer respectively.

In the Tangent Galvanometer, there is a coil of wire wrapped round the cireunference of a circle. This coil is mounted vertically, but in such a way that it can, as a whole, be turned round a vertical axis; the current to be tested can be passed round this coil, there being binding screws provided for this purpose. In the centre of the vertical circle there is poised a very short magnetic meedle, which naturally tends to
point moth and south. 'I'le coil is bromght romul until its phane eomeders with the north-ind-sonth dineetion assimed by the noedte: and then the current is passed through. 'The needle now deflects. 'The amount of its deflention is ohserved, and by the aid of tables which inform ons ats to the values of the tangents of dillement ansles, we may ealenlate the proportionate values of the enrent-shengths which give rise to the different deffections observed. The instmment should le standardised: that is, it should be ascertained what deflection is produced when the cmment actually passing is one Ampere: then the deflections produced by currents of other strenglls are proportional to the tangents of the respective angles of deflection : ancl an instmment so standardised may serve as an Ampere-meter. The instrmment may be so constrmeted as to enable us to dispurnse with reference to nathematical tables. 10 in Fig. 260 the neetle NS, poised at O, be provided with a long pointer, and if the dellections be read oll' on a straight scale, the readings on this scale represent the fangents directly, and the

Jig. 260 . strengths of the eurrent are proportional to those readings: so that we neel not trouble onselves abont the momber of desrees in the angle of deflection.

In the Sine Galvanometer, we again have a vertical coil of' wire free to rotate round a vertical axis; the reerlle is poised as before, but may be longer' than in the 'Tangent Gal. vanometer. The dillerence between the Sine and the Tangent Galvanometer is that in the former the current passes continnously; the neerlle deflects: the coil is rotated so as to try to make it lie parallel to the needle; this somewhat alters the position of the needle itself: lut the attempt is pursued until it is successlul, and the needle and the coil lie in the same planc. Then the strengths of the cmrents are proportional to the sines of the angles of deflection produced; and if the instrument be properly standardised, the strength of the current passing can lie aseertained in Amperes.

Both in the Tangent and in the Sine Galvanometer it is of great importance that the coil should not itself ofler such a resistance as materially to modify the strength of the eurrent. Hence these instruments are often made with a single thiek copper strip instcad of a coil: but the advantage of a coil is then lost, namely, that each turn of the coil acts so as to increasc the effect, for each turn of the coil is equivalent to an increase in the strength of the current passing round the needle.
 it may bestated that at Cireenwirls in the year 1896, with a tangent frilvanometer of one thra, in which the vertiral cinole lais
 Amprote is $15^{\prime \prime} 533^{\prime}$; :mal that produced lay a emment of 100 Ampres wonlal be 88 ' 199^{\prime}, for the tangent of the latter angle is equal to 100 times the timanent of the fommen:

Agrina, the tendency of the needle to be defleated maty bes rostrained by a spring : and the amomat of 'lension on ol 'Jorsion Which mast be applied to the spring in order to prevent the needle from deflecting at all may be measured.
lı a Differential Galvanometer there are two coils, wonnd together round the sane acedle. Currents are sent round these eoils in opposite direetions ; and il these lee equal there is no effect on the needle; if one he stronger than the other, there is a cleflection, due to the difference between the two curvents.

The ordinary method of Telegraphic Signalling is hy the use of a Key, by which the cireuit can be closed for longer on shorter periols. The longer or shorter currents cause it galvanometer needle to twitell visibly in accordance with the signals transmitted. Sometimes the signals are not short and long, but positive and negative, the key being devisen so as to commme the direction of the current sent round the eircuit, aecording to the way in which it is handled; in that case the signals will be right and left clefleetions of a gralranometer needle ; or right and left defleetions of a spot of light on a sereen, produced by a small mirror attaehed to the small deflecting needle; or they may be higher and lower notes on a pair of bells rung by one of two eleetromagnets in fixed magnetie fiellds.

The action of Currents upon Currents.-To understand this we may refer again to the comparison

Fig. 261. of an electric circuit to a magnetised disc. Two such Magnetised Discs, with their similar faces looking the same way, tenl to slip together so as to have the same centre: and so will two circular Circuits, bearing Currents which run parallel to one another (Fig. 261). If their similar fices look opposite ways, the two magnetised discs slip' oll one another, and rotate, so as to make their similar faces look the same way: and so will two circular currents
whose lirections are opposite. The pusition of stable equilibrimm of two such current-bearing circuits is attained when their respective cuments run parallei to one mother, and ats close together as pussible.

If the two coils lee one lirger and the other smaller, and both mounted on the same vertioal axis, so that the smaller one maty rotate within the larger one, they will, when entents are passed through both, tond to come into the same plane with theil currents parallel to one another ; and then in orler to turn the immer one out of that position we must employ Force, that is to say a rotating Couple or 'Toryue.

Jig. 2tis.

This rotating comple is such, at any given angle of dellection, that it is proportional to the sine of the angle of deflection (that is, in Fig. 263, if BAC be the angle

Fig. 263. through which the inner coil is twisted from a position in the line ΔC, it is proportional to $\mathrm{BC} / \mathrm{AB}$), and also to the product of the current-strengths in the two eoils: it also depends on the number of turns in eath coil, and on the relative sizes of the two coils. but now let the instrument be so constructed that the same current passes through both coils ; then instead of the product of the two eurrent-strengths we have the rotating eouple froportional to the squere of the one eurvent.strength, that, namely, which we may wish to measure. Therefore if we find how mueh Torsion we must apply to a spring in order to force the two coils to stand at right angles to one another (instead of allowing them to stand in the same plane), we have an easy means of ascertaining direetly, when once we know how much torsion is required for one Ampere, what is the square of the eurrent-strength (in Ampères) : and from this we may readily ealculate what the current-strength itself is. Or else the in-strument-maker, instead of graluating the torsion-dial in degrees, may graduate it himself in sueh a way as to enable the number of Amperes to be read off direetly. This doubleeoil principle is the principle of eonstruction of Siemens's Electrodynamometer.

Let a current be passed through an outer bobljin of insulated wire; if an inner bobhin he free to move up and down along the axis of the former, and if a current be passel through the inner bobbin, parallel to that in the outer, the inner
fobbin is sucked in to the outer one, for all the Lurns of the two roils term to lis as rlose logether as prosible. If the same

 stumer of the current-strengla. We mat prevent the immo. bobhin boing sumked in, by trying to withoraw it by moans of aspring, malil we get it into in standard prosition : and whon it is in that standard position the spring will be strelcled to a cortan extent, on the prineizle of at Sping-Babanee. 'Ihan we kinow, by readins the soale, low much frome is being exterted, amb, as lefore, the instmment may be standardised.

Wharever the indication of a currmi-measmang instrument is proportional to the square of the current passing, it will always be the same, whatever be the direction of the current.

Of conse in the medranical construction of instruments of this class, the actual movernents or the spring-torsions or -tensions to le comprated may be rendered manifest and measurnble by making then move pointers on a dial, by means of aplropriate gearing.

The subject of the action of Currents upen other Currents was not aprorched by the earlier experimenters from the magnetic point of view, or from that of the behaviour of complete Circuits. They looked at the more obvious action of a simple wire, bearing a current, upon another wire bearing a current; and they arrived at the following luropositions as the result of experience.

Two currents rumning parallel and in the same direction attract one another; that is to say, the current-bearing wires tend to approach one another.

Two currents running parallel and in opposite directions repel one another; the wires tend to more apart.

When the currents are not strictly parallel, but both have the same general direction, they attract one another and tend to assume parallelism. When they have directions whicll are on the whole opposed to one another, they tend to move apart and also to rotate into a position in which the cmrents run parallel and in the same direction, in which position they attract one another.
'Two eurents rmming in the same direction, end-on to one another, repel one another'
suphose dentent is passed through a sulenome or spiud roil of wire: in the dithent turns the curvents are parablel to one another and in the same direction ; the difierent turns of the coil attrat one another, and the coil tumls to shonten.

Action of a Current on Soft Iron,-.. In order to explain this, we may return to on magnetic circuit, the lines of which threal the axis of a current-bearing spiral or "solenoid."

If we choose, we may say that the air within such a spiral is itself a magnet made of air. The essence of a magnet is not that it be made of iron on of any other substance, but that Lines of Force, or, as we slall now call them, lines of induction, rm directly through it. Therefore, wherever there are lines of induction passing throngh air, the air itself becomes magnetised: strongly where the lines are crowded together ; feebly where they are few or have diverged much from one another. But he it more or less at any given point, this magnetisation of the air affects the whole Magnetic Field; and it therefore generally involves the whole Ether of space in those strains and stresses which we represent to ourselves by means of Lines of Force or of Induction.

The lines of induction must form closed circuits: and in ordinary magnets the magnet itsclf only firnishes a part of the path traversed by the lincs of induction. It is possible however to arrange matters so, in some cases, that these Lines may travel wholly in metal: in such a case the lines do not escape to the outel air. A good dynamo machine should present a good metallic circuit for these lines: and one's watchspring ought not to be at all affected by being brought into the neighbourhoorl of an ideally good dynamo, which would confine its magnetic ficld wholly within its own metal.

Confining ourselves in the meantime to the region within the spiral, let us replace the air in that region by an equal bulk of soft iron, loy slipping a soft iron bar into the spiral. The magnetic field surrounding the
spiral is then say 300 to 400 times as strong as before ; and the solt iron acts like a magnet 300 to 400 times as strong as the original air-magnet had been: 300 to 400 times as many lines traverse its substance. Why this shonld be so is a mystery.

This mmmber, 300 to 400 in this case, is called the Magnetic Permeability of the substance acted upon. In iron, this permeability depends apon the ynality of the iron ; and there are some alloys of iron known which make magnets not a whit stronger, as magnets, than onr original air-magnet.

Suppose that instead of leaving our soft-iron core wholly in the spiral or "solenoid" coil, we withdrew it gralually, in the direction of its length. Fewer and fewer of the turns of the solenoid would surround the soft iron : the effect of the soft iron in increasing the number of lines which thread the solenoid would become less and less. When the core has come completely out of the coil, the effect of the soft iron is not nil, for it still receives some of the lines, those in a weaker part of the fichd, and it increases the total number of lines which thread the coil ; but the extent to which it does this diminishes as its distance increases: and thus the strength of the Magnetic field within the coil diminishes as the core is withdrawn, and may be regulated to any niccty between its full value when the core is wholly in, and its mere air-value when the core is wholly removed. We may see this in Medical Induction Coils: there are two coils, of which one slips over the other; the inner one carries an internpted current: the field of force is occupied, within the coil, by a soft-iron core whose position is, in some models, capable of adjustment for the purpose of modifying the strength of the field in the way above explained.

If the iron be very soft it loses its magnetic properties the instant the Current ceases : but few specimens of iron are as soft as this. Steel does not strengthen the field to the same extent as soft iron does; it has not so great a Magnetic Permeability; but when the current ceases, the steel retains in large measure its magnetic properties and is a so-called permanent magnet, with its Magnetic Circuit and (if it have free ends) its Poles and its surrounding Magnetic Field.' All steel magnets are now made in this way.

The lines of foree which remain tend to shorten and shrink
and disappear. This accounts for their form as shown in Fig. 253: and it accomets for a certain slow spontaneous demagnetisation of a magnetised steel har. Hence steel magnets should ahways be kept in the manner shown in lig. 264, with cross-hars of soft iron: but the whole shonld be arranged so as to provide a complete magnetic circuit

Fig. $2 \mathrm{~B}_{6}$. for the lines, all (or as far as may lie in view of the needful air-gaps) within the substance of the magnets themselves. If magnets be of a horse-shoe shape they shoukd always have a soft-iron eross-bar or "Armature" on, for the same reason: the lines tend to pass through this instead of through the surrounding air. The fleld in the neighbourhood of a horse-shoe magnet is thus very mueh weaker when the armature is on than when it is off: it is weaker even when the armature is almost on, than when it is removed to a distance ; and thus it is possible to regulate, not the Strength of a Hagnet, which for a steel magnet remains praetically the same, but the strength of the fleld between the poles of a horse-shoe magnet, by bringing a soft-iron armature to a greater or smaller distanee from its poles. This is found utilised in the common medical magneto-electric machine, in which, as is said, "the strength of the magnet is regulated" by an adjustable picce of soft iron whieh,' when it is brought near the magnet poles, weakens the fleld by drawing off, through its substance, some of the lines of that field.

A bar of soft iron acted upon in the way described, is an Electromagnet; and the power which very soft iron possesses of instantaneously losing its magnetic field when the current ceases, just as air will do, is of the greatest value ; for it can be applied in the most varied forms of apparatus. Again, if we push up the strength of the exciting Current, increase the number of turns of the spiral round the iron, and use a thick bar of soft iron, we may make an immensely stronger magnetic field in its neighbourhood than we could by any combination of permanent steel magnets of the same size.

Eleetromagnets have been used, stronger than steel magnets of the same size could be, for drawing iron out of the eye, steel needles throngh the skin, etc.

Some Energy is lost in setting up the magnetic condition of
elechommgnets ; and this is restored, as Heat, when tho exriting current is arrested.
'The exciting enrrent cant be roadily mate and broken ly elosing a key K, lifo 205, mad letting it go ; when the current is mate, the soft-iron bar low-

Fig. 245. comes an Electromacruot, and it attracts a prece ol soft iron poised in the neighbourhood of one of its extrenities; when the current is broken loy the release of the key, the electromagnct loses its mangnetie properties, and the attracter piece of soft iron returns towards its original position ; and the movements of this attracted piece or "armature" of soft iron may be utilised so as to work any form of mechanism which may accomplish the particular purpose in view.

For example, in telegraphy, sometimes the current which the operator at the sending station sents on does not go all the way to the reeeiving station, which may be too distant to reeeive the signals with ease or certainty. In that ease the emments sent nay simply govern the movements of a small armature of soft iron at an intermediate station; and this armature nay, by its movements, make and break the eurrent for a eireuit lying beyond it. By this device, known as a Telegraphic Relay, signals may be sent over very great distances.

Round a limited portion of the circuit, say a few incles of the wire, we have analogous results. We have seen that the lines of force close to the wire are small closed curves, almost circular ; and a bar of soft iron, laid along any of these Lines of Force, will become, for the time being, an Electromagnet.

Let a wire be made to pass vertieally through a hole in a piece of eard, and let the eard be held horizontally, with the wire at right ancles to it ; and let soft-iron flings be sprinkled on the eard. The iron filings will of eourse lie on the eard as they happen to fall, and their chrections will be promiscuously discrepant. Now let a Current be passed along the wire, and let the eard be slightly shaken so as to permit the filings to take up any position which they may then tend to assume. It will be found that they arrange themselves on the eard in closed lines, almost in eireles, round the wire. Eaeh filing has, under
the inthence of the curmit, become a litile manget like a smatl compass-nedede: and like a tompass-nemble it temests to turn romet so as to lie aceoss the corrent-bearing wire, and along the leeal lime of force.

If in Fig. e5j, p. 107, the nemble there shown the one of sufi fron, it witl, if baid areoss the curent in the manmer shown, beeome an chectromgnet: and its intuced poles will be the same as those markel in that tigure. 'The finger-and thumb rule aheady given is therefore also applieable to the position of the induced poles in their relation to tho inducing curtent.

Magnetic Induction. - Whether the Nagnetic Fied be due to a magnet or to an ehectric current, it is identical in its properties : and it is usually said that one ol the properties of that Field is the power of producing Magnetic Induction. 'Ihis is nothing more than that a har of irom laid along the Lines of Induction in a magnetic fiehl assumes magnetic propertics, as we have just seen. If we lay a bar of soft iron end to end with a permanent magnet it becomes temporanily magnetised ; if it be of sted it becomes pemmently so. If we bring a bar of solt iron near one end of a manget, it becomes magnetised, and its farther end is repelled while its nearer end is attracted ; but the farther cond, because it is farther off, is in proportion less repelled than the nearer end is attracted, and therefore on the whole the ban of soft iron is attracted by the magnet. A bar ol soft iron is always attracted by a magnet, for it has of itsulf no magnetio properties and its nearer induced pole is always dissimilar to the nearer pole of the attracting magnet. A permanently magnetised bar of steel will, on the other hand, have its one end attracted and its other end repelled.

The Lines of Indnetion may be continued through several bars as if throngh one long one; and thus a magnet may support a chain of softiron mails, of which each becomes for the time being a magnet.

If the iron actel mpon by induetion be not perFig. 266. fectly "solt," it may not lose all its magnetic properties at once when the exciting magnet or current is withdrawn ; but if it be shaken, hammered, or heated, it may lose them completely.

In the instance of soft iron, the induced magnetic positive pole is as far away from the inducing positive pole as it can go ; and the bar ranges itself lengthwise along the Lines of Induction ; lunt in most sulbstances it is
ats near as it can come, and the indnced positive pole lies
 tive probe. Such sulstances are colled diamagnetic sulsstances: and these, instexal of lying with their lengths along the Lines of force, temb to lie with their lengths across these, so that they are magnetised transversely. Ol these substances, bismuth is an example: but all diamagnetic substances are only very feelly affected by magnetic induction, and differ very little from mere air:

From what has been said as to the identity of action in the fich of magnotic force surrounding a magnet and that surrounding a closed current, and from the obvious fact that Magnetism is a property of the smallest particle of a magnet, it has been inferred that in a magnetised lody the molecules themselves have electric currents circulating round then. Of these any two contignous ones neutralise

Fis. 267. one another's external effect (Fig. 267) ; but the outer parts of the currents in the onter molecules remain, and these, Laken together, correspond to the current along the wire of a solenoid coil. As to the directions of these currents, it is inferred that if we look endwise at the north-seeking pole of a magnet, and could see the Molecular Currents to which the marnetism of the magnet is due, we would sce then llow in a direction contrary to that of the hands of a watch, as in Fig. 267.

If we have only air in the magnetic circuit, the Strength of the magnetic field is directly proportional to the strength of the current: and this gives us a means of ascertaining the relative Sirengths of two Currents passed through the same spiral of wire. If there be iron in the magnetic circuit, we do not get say ten times as strong a magnetic field by using ten times as strong a current; for the permeability of iron falls off in proportion, the stronger the magnetic field in which it is placed.

The Intensity of Induced Magnetisation which soft iron can acquire under induction tends to rise to a maximm limit. This limit is called the Limit of Magnetisation ; and a bar magnetised up, to this limit is said to be "saturated with
mingetism" or " magnctisel nly to its lull capacity for magnetism." The reason for the existence of smeh a limit appears to be that the process of magnetisation, i.e of tuming the already magnetised moberndes of the iron romm into the same direction, is then completed, and there are then no molecules to be turned into position.

If we estimated the strength of a enment. hy means of the suction of a solt-iron bar into a current-baning solenoid, the result would bot be suitable for the measturement of farge cuments, because the induced magnetisation of the soft-iron bar is not enite proportional to the exciting curment, and the readmes of the instrament are not quite proportional to the stare of that cmrent: but this dilficulty is got over in Ayrton and Perry's Ammeter (i.f. Ampure-meter) by using, not a solt-iron bar, but a very thin soft-iron tube. In that case the thin tube wery soon reaches its limit of marnetisation ; and when this Limit has been attained, the magnetic strength of the tube remains constant; and the pull upon the spring is then directly proportional to the nmmber of Amperes, not to the square of that number. For small currents a solt-iron bar does well enough: and in that case we may find what the suction of the bar into the coil is by balancing it against the weight of known masses lrom a "box of weights," as in the Electrical Storage Co.'s Ammeter. Or, as in Schuckert's Ammeter, we may see how much this suetion into the magnetic field of a spiral current will displace the bob of a pendulum, which bob consists of a mass of soft iron.

(e) The Physiological Effects of a Current

We need merely mention here that Current Electricity was first discovered through an accilental olservation by Galrani that the contact of two metals with the nerve of a frog's leg made the muscles twitch. The student will become familiar with the physiological effects of a current in later stages of his study. Intermittent currents produce contractions and relaxations of a muscle ; rapidly intermittent currents produce tetanus.

We have thus stated the principal properties and ellects of a Steady Current of electricity, and shown, in passing, how these properties may be used as means of measuring the strength of the current.

When once we know that a current is of a certan strength, it does not matter in the Jeast what its. source was; it might have cume from a smatl cell, or it might have come from the electric mans of a town and leen reduced by the interposition of suitable Resistances; on it might have come from a frictional machine worked continuously withont sparks, or from a suflicient tharmo-electric pile. If the strength (anl, it may be, the iluctuations of the stremgth) lee the same, the effects in and near the conductor along which the curremt passes will be the same.

But a medical man who applicel an electric current without knowing its Strength wond le working in the dark: le must always measure his currents by an Ampere-meter or rather ly a milliammeter, which measures from 1 to 300 thousandths of an Ampere.

Quantiry of Electricity

We may recall the definition of strength of current as the quantity of electricity which is supposed to flow past any given point of the conductor during each second: and we must now ascertain what is meant by the expression "Quantity of Electricity."

Quantity of Electricity.-A Current may in particular cases be uniform ; it nay be kept up, as it is when a galvanic cell or battery is used as the source; but the distinctive constant condition of the neighbourhood of a wire in which a "steady current" is passing, and the continuous evolution of Heat in a wire or the continuous Chemical Decomposition of an electrolyte throagh which a "steady current" is maintained, do not help us directly towards the idea of a "current." That concept comes from another part of the subject, namely, the discharge of a "charged" body through a wire. Let a bocly be "charsed" or" "electrified"; we may comnect it with the nearest gas or water pipe, or otherwise bring it into com-
munication with the eath, as by means of a long thin wite ; its eharge will disappear ; it is saill that it eseapes to carth along the wire; hut the impontant point to note is that during a vere brief perion of thme that wire presents all the pifmmena of a eurent-bearing wire. If we use an exceedingly long and thin wire we may protraet the time which the charge takes to eseape: we are therefore in a position to measure the strength of the eurrent at successively equal intervals of time ; and from this we get data which enable us to calculate What the original chirge or quantity of electricity must have been: for the strength of the ' 'ument, considered as a rate of escape of electric Charge or Quantity, depends on what that Quantity harl origimally heen.

When we compare the strength of the current, so oldained, with the strength of the current through the same wire from a galyanic cell, we find that the C'urrentStrength or rate of flow in the case of a galvanie cell is far greater than in the case of any ordinary charged or electriticel body : and therefore the Quantities of Electricity with which we have to deal in the former case are far greater than they are in the latter.

One consequence of this is that the Practical Unit of Quantity, with which we have hecome acquantel under the mane of a Coulomb, is far larger than the Unit of Quantity to which we are led when we contemplate only the phenomena of charged conductors and their discharge through wires. The latter unit is called the C.G.S. electrostatic unit: and the Coulomb is erpual to $3.000,000,000$ C.G.S. electrostatic units. If we were to measure the electric puantitics, with which we usually have to deal in clectric eurrents, in C.G.S, electrostatic units we would have to use the most inconveniently large numbers. But the student must take care not to confuse the Coulomb, which is used as a practical unit of guantity, with the C.G.S. electrostatic mnit of olectric rquantity, of which we shall soon reach a definition.

If we put a piece of glass and a piece of resin torether, we find alter pulling them apart that they attraet one another. If we use two such prieces of glass
and pieces of resin we find that either phece of glass is attracted by either piece of resin；but that the two pieces of ghass on the two pieces of resin repel once amother．＇This may be ascertaned by suspendiner these whects on thin silk threads；if they attract they aj－ prowh one another，when sulliciently near to one another to make the phenomenon manifest ；if they repel they recede from one another，and the suspending threats diverge．These bodies are therefore in a comfition differ－ ing from that in which they were before the rubling ； they are said to be＂electrified．＂Similarly clectrificel bodies repel one another ；dissimilarly electrified borlies altract one another．The Ether between the electrified glass and resin is in a stretched condition，the same as that which has been already described in reference to the Ether between the two terminals of a Cialvanic Cell．

A body may lue very feebly electrified，as by a very little very gentle rubbing ；or it may be more highly electrified，as by firmer rubbing in very dry air．A body more or less highly electrified is thus sairl to be more or less charged with Electricity，to bear a greater or less electric charge，or to possess or be charged with a greater or less Quantity of Electricity．We thus find that bodies may vary in their electric charge，and it is necessary to have a standard，for the sake of measure－ ment of this electric charge or quantity of Electricity． This standard is the so－called Unit of Electric Quantity． In order to reach such a standard，advantage is taken of the further observation that the attraction or repulsion between two electrified bodies diminishes as their mutual distance increases ；and the law is that the Attraction or Repulsion varies inversely as the square of the distance letween them．Then，again，the more highly a body is charged，the more powerfully is it attracted or repelled， and the more powerfully does it attract or repel．On the whole，the phenomena may be brought together and sum－ marised by the formula that the Force of Attraction or of

Rupulsion, in dynes, is ughal to the Charge on the one benty multiplied by the Charge on the other boty, divicel by the squtite of the Distance between them.

Then, what would he the Unit. of ('harge on of Quantity ? Sulpose the Force was one dyne: and also that the Distance was one centimetre; blem the prodnct of the two Chan'res will be egmal to 1 ; and if they are eqpal to one amother, they are sum that the figure 1 is the proper mumber to employ in relerence to each of them: that is, carla is: a Unit-Charge.

Thus we anive at the defuition of the Unit of Electric Cllarge or the C.G.S. Electrostatic Unit of Electric Quantity; this is a quantity such that, if two small hodies be each charged with it, and placed at a mutual distance (between their centres, in air) of one centimetre, they will attract or repel one another with a Force equal to one dyne.

Such, then, is the C.Ct.S. Electrostatic Unit of Quantity ; hut it may now be noted that it is founded on a mere convention. It is arreed, because it is found to be convenient so to do, to speak of Electricity as a 1hing, a kind of imaginary matter, which may be distributed as a film on the surface of a charged body, or which may rum along a wire and thus escape froni a charged body to the earth. We say that this imaginary matter attracts or repels other electric matter, equally imaginary, according to laws duite amalogons to that of Gravitation in reference to ordinary Matter ; lut all this is merely a mode of stating the observer forces in the region surrounding an "electrified" bocly, that is in the "Field of Electric Force" surrounding that boly: This mode of statement serves its purpose very well: and perhaps if more accurate phraseolngy were alonted, and everything referred at once to strains and stresses in the Ether, the language which would have to be employed would not be intelligible to the beginner. We must therefore go on mhesitatingly, using the language currently in use,
and refiming ownostatio phomomenat to distribntions and abluctions of this imaginary electric matter, with orcowional digressions to explain how the same phenomenta may be othemish accombed for in terms of disturbaners and loeal comditions in the Lither.

In the first place, then, this imagimary electric matter may be tor - positive or negative. (ertainly a pice of glass pubbed with resin is in a different condition from the piece of resin on which it has leern robled ; for the former will athact while the latter will repel a piece of resin, similarly fobberl on erfass. Therefore the glass is said to be charged with vitreous ind the resin with resinous Electricity ; and it is found that if any londy lee electrified at all, it must lee charger either with Vitreons or with Resinons electricity. We thus have only two "Kinds of Electricity" to deal with. But, further, if a body charged with resinous and another equally charged with vitreous electricity be brought into contact, the charges of both apparently disappear, and the bodies resume a neutral state. To add a ruantity of vitreous to an equal quantity of resinous electricity thus leads to the alssence of electrification, just as the ardition of $+x$ to $-x$ in algebra gives a result which is equal to zero ; and thus Vitrenus and Resinous Electricities lear in one another the same relation as Positive and Newative quantities in Algebra. Which is, however, the positive and which the negrative? This we do not know ; lut it is agreed that we shall call the vitreous "positive," and the resinous "negative." Therefore we say that when a piece of resin is rubber on glass, the glass acquires a positive and the resin a negative charge. Our adjectives might, however, have been reversed withont affecting our results.

When a body is charged, and if it be a conductor of electricity, the charge is distributed only over its surface. Inside the conductor there are no electrical phenomena at all. In Faraday's ice-pail experiment,
a chatered body was led down into the interion of at hollow metal ressel，mat allowed to tomeh the side on bottom：the whole change of the charged body disappeared，hut was fommed distributed on the outer walls of the metal ressel surmomeling it． So long as the bouly I diel not tometh the walls of the vensel it．rutaned its charge，hat lowt it whens it tomelal the ressel dr．

In the languare of the Ether－stress theory we

Fi品 2 伿。 would say：Komel the electrified hoty there is a resion or field of electric force in which the Ether is suh－ pected to Stress．At cacl！pmint the Rther－stress has a particular amount，and line of action．At any one point in the lield，a small electrified hody would，by reason of the stresses in the Ether，be drawn or driven in some determinate direction with a determinate Foree．It would be drawn or driven away from the point in puestion along some Line passing through that point：and if we traeed out its smbsecuent morements，we wonll find that its conse had been malped out for it before it eame into the fielu，and that it followed the trend of whit are called the Lines of Electric Force in the Fieln．These are lines which show at each point the direction in which an electrified body would tend to travel it it were bronght into the field and were allowed to move freely under the intluence of the existing Forees there．Fig． 209 shous these Lines of Foree in the neighbourhood of

Fir．ario． a sumall charged body in a large space：the attractions and repulsions are at all points practically straight from or directly towards the chargerl borly．Fig．252，p． 400 ，also shows the Lines of Electrie Foree in the neighbomr－ hoot of two oppositely charged conductors；a positively charged body plaeed at any point in the field would not travel straight towards the negatively charged borly，but would take a devious path， along the local Line of Force，in order to reach the nesra－ tively while at the same time aroiding the positively charged boly．These Lines of Electric Foree are oppositely directed at their two ends，much as a piece of stretelacl indiarubber pulls one way at one end，and the opposite way at the othrr． The lines of Foree terminate on the surface of a conductor and do not penetrate it：and they thms lave free ends on the surface of any conductor whiel they may encomnter：
lint whore thre are Firee linds ol limes ol fooce, thore and threr only is there what we call a distribution ol electricity, or of electrical quantity on Charge. 'These lines of blectrie Fores me thomselves somewhat anditrary moans ol settiner forth the forces netually existines in the field; but they serve to cmphasise the fact that the phenomena wre not phas nomma of the borlies moving in the lield, but of the elecetrostatie fleld itself, that is to say, of the lither smmomeling the chargext boulies. It will not be diflimelt to mulerstand, from the analogy of a band of indiarubber, that weh and every Line of Force monst necessarily lave two ends ; that if the essence of the phenomenon is that the Wther is sulgected to Ntress, it nust be stressed between two points at least; and loence, i! any lonly be "charged," this means that at the Gurface which is sairl to bo elarged there is one free end of the corresponding Line of Force, 'Then the other end of that line must be somewhere; whence the following proposition.

For every given charge of Electricity on any chargen body, there must always be an equal charge of the opposite electricity somewhere.

Thus, when a little pith ball, charged positively, is hung upon a silk thread within a room, the equal and opposite nergative clarge will be found on the walls of the room, and the space between the charged body and these walls is a Field of Force. If the eharged body be out in the open air, the oprosite charge is on the surface of the earth and, it may be, upon neigh. lonring clouds or even on the surfacc of the heavenly boclies, distant though these be.

The stress across the Ether is measurable. In the neighbourhood of a charged conductor it is as if the Ether were made up of strings or cords, each of the shape of the corresponding Line of Force, and all stretched ; so that these cords or lines of force tend to shorten themselves and to push each other aside. The lines of force therefore repel each other. These two tendencies on the part of the Lines of Force, to shorten themselves and to repel each other, account for all the movements of electrified bodies in the Field of Electric Force.

Where the Forces in the field are greater, we figure to ourselves the Lines of Force as being more crowded together ; and it is agreed to suppose them present in just such numbers that where the mechanical force on a mit of electrical quantity-not the Coulomb, but the C.G.S. unit of quantity-is one dyne, there is one line of force to be found crossing that region per square centimetre of area, this area being set off at right
angles to the direetion of the lines of loove themselves ; and so on in propertion. In the fieht as thas representent, tho direetion of the lines of fore shows the drection of the Poress acting on a unit-puantity of electricily at any point, mal the relative crowding together of the lines of fore shaws what is called the strength or lutensity of the fleld of electric force, i.f. the value, in dyncs, of the Fore acting upon a LThit of guantily when phacel there.

When in hoxly chased with a C.C.A. electrostatice unitquantity of Electricity is put at some point, in the ficlel, say at a place where the Force acting upon it is one Dyne, and is then allowed to move a revtain distance, say one Ceutimetre, a certain amount of work is done mpon it, in that case one Erre; then in driving the charge from the one position to the other, one Erie of potential energy is sacrificed by that electrical system which consists of the attracting and the attracted, or the repelling and the repelled bodies, as the case may be. Let us now take the unit-charge away from the field, and look at the field itself; let us considel the two points which formed the beginning and the end of the path of the body moved. We might describe these two points by saying that they are, relatively to one another, in such conditions that if a unit-charge were placed at the one the system woukl have one unit of Potential Energy more than if that chatge were placen at the other ; and we might express this briefly by saying that the one point is at a higher "Potential" than the other, by one unit. The Difference of Potential between the two points measures the work done mon the unit of quantity, when it is allowerl to travel freely from the one point to the other in oberlience to the existing Forces in the field ; conversely, it measures the Work which must be done by exterior forces in order to make the mit-charged body move from the point of lower potential to the point of higher potential against the Electric Forces in the field ; and the Work done by or against the electric forces, when a body bearing any" charge, Q units, is moverl from the one point
 of Potomial.

The Difleremes of Potential letwern two Points is a matter of importane thromgont the theory of Ekectricity. Manly is it so for this refmom, that if by any means a dillerence of potential has once been set up, between any two prints, and if a conduchor bearing a charge of cecericity be laid aeross from the one of these points to the other, the charge on the conductor so laid across will alter in its distribution; it will tend to acenmulate fowards 1he point of lower potential ; in order to eflect this, it will flow, and there will he a current of clectricity along the conductor: A Current of Electricity along a Condnctor is therefore due to a Dillerence between the Potentials at its extremities. The dillerence of potentials leetween any two points may be itself ascertained and may he measured, in Volts or in C.C.S. units as we please, liy finding out what the tendency is for the passage of a current along a conducting wire laid along from the one point to the other ; that is by measuring the Current which actually passes in a wire of known Resistance. The principle is the same hoth as between two points in an Electrostatic Field, and between two points of a Galvanic Circuit, though this method is not by any means the most suitable in the case of an electrostatic field, becanse the current produced is so brief in its duration. In an electrostatic field, the offect of laying a wire across from the one point to the other is to equalise the potential of the two points, and the current by which this is effected is extremely brief and small in quantity; but in a continuous Current the Difference of Potential between any two giren points of the conducting wire is kept up.

When our aim is to measure the Difference of Potential leetween two bodies aeeording to eleetrostatie methods, we must find out what the Meehanical force or Traetion is across an eleetrostatie field letween two plates at a known distance aprart, whieh phates are respectively brought to the same potentials as
the two bodies to bo tested ; and from this the dillemence of potentials can be calculated.

Diflerence of Potential is amalogrons lo Dillerence of 'Temperatmre, and deternines a flow of Eluctricity as the other determines a liluw of Heat.
"The expression "The Potential at a Point" is sometimes mate use of. It semms as well to explain this. We cam experimentally know nothing about lotential exectit as a difference of potential between two points, and we know nothing as to the absolute value of the l'otential at any one point. If we did know anything about this, it woukd be the dillerence of potential between the point in question and sone other point wholly remote fromany electric influence whatsoever; for eximple, a point at an infinite distance from all electribed bodies.

Honee we have The Potential at a point defined as the number of Erys of work which would be done by a repelling system in repelling a unit-charge to an infinite distance, or which would have to be done in bringing up a repelled unitelrarge from an intinite distance to the point in question against the electric forces.

All we really can do however is to say what is, at any particular moment, the potential of the point in question with reference to the Earth. For all we know, the Earth may be electrically chargol, positively or negatively; ancl perlaps its charge, if it have any, may fluctnate in accordance with the development of electricity elsewhere in the Universe, say on the oecurrence of storms in the Sun. But we are not aware of such charges, or of their anomet; our knowledge is all relative; we assume the earth to be in a constantly uniform electric condition; and we make the very arbitrary assumption that it has no potential at all. 'linen a body which is at the sane potential as the Earth, that is, one from which no eurrent flows towards the earth (or vice versî) when that body is connected with the earth by a wire, is said to be at zero potential. All budies from which a current flows towards the earth through a eommeting wire are then said to be at positive potenvials, while those in which a current flows from the earth towards the object on similar connection being made are said to be at negative potentials.

For exanule, in a dyuamo eirenit where the difference of potentials between the terminals is say $500 \mathrm{~V}^{\text {rolts, il the mid- }}$ point of the dynamo be at zero potential the terminals are respectively at potentials +250 and -250 Volts ; and a person
 through hime the rirth，or ramaing through him from the candh，is the c：ase might be．

What haprens daring the redistribation of chamege during a brief current of electricity maty be umlerstomed from Figs． 270 and b ．In Fig． $279 a$

（17）

Fig． 270.
 A is a booly bearing a surface－charge of clectricity，and very far from any sur－ rounding objects．The lines of force rauliate out from it practically as straight lines at right angles to its surface．In Fig． $270 b$ there is brought up intu the neighbounhood of A another borly fs， and A and B have been connected by means of a wire ；the Lines of Force radiating from both A and 13 taken together are exactly the same in number as they were before，when radiating from A alone．They have however assumed new positions ；each of them has taken up a different position in the field；and during the passage of the Current，each of them must have slipped along，transferring the stressed condition of the Ether along with it from one place to another． This enables us to understand how it is that during the passage of a Current，the Ether is the carrier of the energy，and that the conducting wire，if a perfect conductor，is really outside the phenomenon，which is confined to the Field of Force external to the wire． There is also a corresponding displacement of the lines of force at their opposite extremities，at the opposite boundaries of the field of force．While a continuous current is passing along a wire the Lines of Force go slipping along the surface of the wire with the velo－ city of light，and very few of them are present at any one point of the conductor at any one instant of time．

Take for example the case of a wire along which a emrent whose strength is one Ampere is passing．If the whole of the lines of force which pass any given point in a second－that is，
the number of lines whiel eormespond to one Coulunh, on 3000,000000 (. G.s. wnits of yumity-wore prosent in the
 prodigions, and sparks of enomons lemeth would be prodered. But the ebectrostatic fores in the neighboultood of a wire bearimer a curent of electricity are very small; the wher does not tramsmit more Encrgy to any given point of the emblumbor than is instantanconsly taken mp and transformed either into Heat, into the energy ol Work, or into some lorm of Encrgy other than that of electric eomdition of the wire, or rather; thiat of electrie stress of the liedel itsell.

If a body be charesed and placed upon and "insulating" support, that is, a support made of a material which does not conduct electricity, it las $n 0$ means of losing its charse, and retains it for a very long time. Not indulinitely, however ; for there is 110 substance which is entirely destitute of conducting power, and the air itself, througl bringing lust and depositing moisture upon the insulator, causes deterionation of its insulating qualities. The most ordinary form of insulator is a glass or sealing-wax rod, carefully dried and, if need be, sheltered under a protective glass case. A pardial vacumm is not farourable to insulation, for it las itself some conducting power; a rood vachum, on the other hand, is a good insulator.

When a person is made to stand on a stool with glass legs, he may be very highly charged with electricity from a frictional maehine, so that the hairs of his beal may, being similarly charged, repel one another, and stand ereet: and if anothor person standing on the ground touch him, the charge will eseape with a spark. If these sparks be taken off the bare skin, weals may be produeed, resembling an eruption. In extremely dry climates, a person standing on a thick carpet may so far charge himself with electricity by rubbing his feet on the carpet that he ean light the gas by bringing his finger near the buruer ; for a spark then passes.

At the same time, it has to be noted that there does appear to he something of the mature of loss of electric charge by Radiation, which is hindered or prevented by surrounding the charged body by a metal sheath or by yellow glass.

Even if supported in air upon a good insulator a body
will not take 'tu' in indefinitely great charge of elextricily.

 by spark across the air. Nowh smathor densitues of eharte hath this will catuse sparks to fly acomse the intervenine ab between two oppositely changed conchators lyonght near to - カne another.

Capacity. - IV hen it conductur which is charged with Flectricity js hrouglat into contactor intometallic ermmmanathon with another which is uncharged, or not changed to the same potential, then, if the two condnctors be exactly similan and similarly situated with respect to one another, the Charse, or the sum of tho charges, will be equally divided between them ; sut if they be muernal in size, or be unsymmetrically situated with respect to one another, the Charges burne by each respectively after they arc moved apart will not be equal, thougli both conductors have come to the same potential. In the hatter casc, to bring the two conducturs to the same Potential refuires dilierent amounts of Electric Clarge; and the one of the two whicli reguires the greater slave of the joint charge in order to equalise its Potential with that ol the uther is said to have the greater Capacity for Electricity.

The work done in charring a contuctor is, in ergs, equal to hulf the prodnet of the Charge into the Potential acquired. We might have expected it to be the proluct and not half the product, for when a Current passes, the Work or Energy is, in Joules, the proutuct and not half the product of the Amperes into the Volts into the Time--that is, it is the product of the Coulombs into the Tolts: bnt it will lue observed that as we go on charging a conductor, the potential, which is at first nothing goes on steadily rising, so that we encombter a steadily increasing Resistance to further charging ;
and the Average Rexistance to charging, the arerag tendency to a back-flow, which we have to overeome in conserpuence of the axisting potential, is erpual to the average potential during the chargins, and this average potential overcome is half the potential ultimately attainerl. If the charge be allowerl to escape to eartly alours a wire, the (prantity which eseapes travels under steadily diminishing potential ; so we again see that the Work which we can get out of a charged comductor pure and simple by discharging it through a wire is equal to the product of the arerage potential into the quantity allowed to escape ; that is of hulf the maximum Potential into the Quantity. In a steady current, on the other hand, the Polential in the circuit is kept up, and remains steady during the working of the battery; so that in this case we have the Energy liberated measured by the product and not by half the product of the Amperes into the Volts.

In the ease of Steady Currents we may look for an analogy in a stream of water flowing in a water-pipe; there are two respeets in which such streams may differ, the quantity of water which flows and the pressure at which it is supplicd. A stream of water small in quantity but supplied at a high pressure may deliver the same amount of Energy per seeond as a stream larger in quantity but supplied at a lower pressure ; and the analogne of the Rate of Flow of water is the Amperes, while that of the Pressure is the Volts. In fact, the Voltage is often spoken of as the Eleetric Pressure ; and thus we hear of ligh-pressure and low-pressure currents. In some cases it is of advantage to supply currents at a ligh Voltage and a low Amperage; for the loss of energy by transformation into Heat on the way from a distant sonree is proportional to the square of the Amperes, and does not depend on the number of Volts. It is therefore well to keep the former low, but to keep the Energy, which depends on the product of the Amperes and the Volts, up to the inatk by inereasiug the Voltage, that is, by delivering the eurrent at a ligh eleetric pressure.

Whan it houly Λ, chamed with elochicity, is lnonght near an unchangel one, l^{3}, it is foumd that the end of the bouly 13 which is nearest the elarged borly becomes eharged with electricity of a kind

 opposite to that of the chargen locely, while the remote end becomes similarly charged. If f's le: touched, the similar charge upon it escapes: and then if A and J' are separated, A is found still to retain its original, change unaflected, while B lias actuired an opposite cliarcre, which it retains. Any number of sueeessive charges may loe induced in successive borlies similar to 3 , by similar exposure to the inductive action of the charged body A .

A Line of Foree never penetrates a Conductor ; ant wherever a line of force has a free end on the smface of a conductor; the surface of that conductor is in a condition in which we say it has a Charge of Electrieity. Let a small pith-ball, or the like object, be charged with electrieity and isolated in an open space. The Lines of Force radiate from it as straight lines, equally in all directions, as in lig. 269 ; and their other ends are to be songht for at the opposite boundaries of the field of force. Now let us suppose that we place around this charged body a complete closed shell of conducting material, say metal, and that we so arrange it that the charged body is precisely in the centre. The metal shell then produces no effect upon the lines of force, exeept to interrupt them to the extent of its own thickness (Fig. 272). The Lines of Force have free ends at the inner surface of the metal, and also at its outer surface. In other words, the metal

Fig. 972. bears on its inner surface a charge opposed, and the outer surface a charge similar in kind to that of the charged body. The number of lines of force is not affected, and the charge on the inner surface is equal as well as opposite to the charge on the charged hody. The number of lines exterior to the shell is the same as it was at first, and the whole
exterior charge is equal as well as similar to the "harge on the charged body, tho so-called "imbucing" "hatre. 'The two "charges" inside the shell, the inthemg and the interion" induced, together produen no dead wom ann axtemal hody; and thus the only "charge" actine upon any extomal horly is the external induced charge on the shell. All this ean he quites easily understood trom the ligme, lis. $27^{\circ 2}$; the original fleld is divided into two parts which are independent of one another. Naturally, therefore, any borly external to the shell is only ated n bon by the lines of Foree in the exterior fiede.

Again, if the exterion of the shell he fomehed, the exterion field is destroyed ; lor conlacting communication is then set np between the shell and the earth : but the inner fleld is not affected by this, ame it persists mint such time as it in its turn is destroyed by contaet being male between the eharged ball and the shell. If this be done, all elcetrical charges disitpear.

If again, while matters are in the condition of Fig. $27 \mathscr{2}$, contact be made between the charget ball and the inner surface of the sliell, the inner field is destroyed and the outer alone remains ; and then, as we ean thereafter find no eleetrical charge within the shell, but find the original number of Lines of Force coming from the outside of it, we say that the whole of the charge has been transferred to the exteriou surface of the shell.
If the sliell itsclf be already charged it makes no differenee; the lines from the chargel ball are all added to those alrealy lassing from the exterior of the shell : and thus we may, hy snecessively touching the interior of snch a shell (in which a small lole is made suffieient to admit of the insertion of the charged ball) with a ball eharged with eleetricity, make a v(ry strong external fich. In this way we may, as is said, accumulate a consicurable eharge of electricity on the outer surface of the shell, thus raising it to a high potential.

If instead of an enveloping shell we take a cylindrical conrluetor (Fig. 271), the phenomenon is quite similar. The indueing charged conductor A has its lines somewhat concentrated towards the induced conductor B brought into its neighbourhood: where these mect B, its surface is oppositely charged ; where they leare it, it is similarly charged : and on tonching the induced conductor the part of the field fartlicr from thic inducing charged body is destroyed, and thereafter the induced conductor is fomm to bear a charge opposite to that of the original charged body.

This kinl of phenomenon in the electrostatie fick is utilisel in the Electroscope, the purpose of which is to detect clectrical charges and aseertain their nature, whether positive or negative. In this instrmment, A is a grlass vessel, closed by a
vulcanito lirl H , throngh which passes atmetal rorl C , smmonnted liy a metal dise $)$, and terminated by two slips of gold loaf lis. 'The ajproach of an electrifled body

Fig. 273. towards the anctallic dise D canses a similar charge to be developed in the erold leale strips If: bat as these two strips are similanly charget, thoy repel cach other and diverge. 'Thoy thas imbicate elcotrianl charere in the borly brought mear D). If the dise I) be toncheed with the hamt, the charge of lis distupears and the leaves fall togethor and remain together, so long as the indncing charged bouy is retained in its position. If, however, the charged borly be removed, the induced oprosite charge of 1$)$ is distributed all the way from D to E . The leaves asain become electrified similarly to one another, and repel one another once more. Let a body charged with a charge of electricity of malinown sign be now brought near the charger elrectroscope. If it be of the same sign as the original charget loody, it will cause the leaves to collapse as it approaches from a sulficient distance: if on the other hand it be of the opposite sign, it will canse them to diverge still farther. 'The reason of this is the following. Suppose the original charged body was positively charged. Then the charge left in the elcctroscope after touching was, on the removal of the eharged body, a negative charge. If a positive charge were brought near, it would tend to induee a positive charge in B which was ahready negatively eharged: the result, at a suffieiently great distance, would be a fall-off in the divergence of the gold-leal strips ; at a particular distance there might be non-eleetrification of B; but the induced positive eharge would tend, at eloser quarters, to overpower the existing negative charge, and again there might be divergence. If a negntive charge, a charge opposed to that of the original body, were bronght near, the effect, at all distanees, wonld be an increase in the divergenee of the gold-leaf strips.

The practical mule for use of the Electroscope is therefore : bring up the eharged body ; observe the divergence; touch the dise and remove the charged body; then eantiously bring up from a distance a rod of sealing-wax rubbed with dry flannel or bearskin, this sealing-wax being then negatively charged: if the divergence of the gold-leaf strips increase, the electrification of the sealing-wax is of opposite sign to the original charge, that is to say, the original charge was positive; if it make the divergence diminish, the original charge was negative.

Induction is also utilised in the Electrophorus. This instrument consists simply of a plate of vulcanite upom which
rests a dise of metal with an insulating handle. Remove the dise: beat the vnleanite with a dry and warn eatskin; the vulcanite becomes negatively charged: lay the moial dise nuon it ; the metal is never pertectly in eontact with the roucanite and is for the most pat sepmated from it hy a film of air ; its lower surface becones positimely and its nyuce surface negatively ehared. Now touch the uprer surftes of the metal with the finger; the upper nequtive charge escapes, and now thene is only left a vary thin Field of Forec between the vnleanite phate and the metal dise. Do Work upon this ficld of foree by stretehing it against the electrical forees in the field; that is, lift the dise away from the vuleanite plate. 'The result is that thourh the gnantity of positive indnced charge on the metal dise cannot inerease, the potential of that charge becomes very high, and now the tinger, applied within a shont listance of the metal disc, may draw a spark from it. Small original charges may thas give rise to successive charges of high lotential. In some of tho hest electric machines the same principle is applied, with this diflerence, that the contrivance is so devised as to act continuously by rotation, instead of intermittently as in the electrophorus (Holtz machines).

In Electrostatic Condensers we have an application of the properties of Electrostatic Fields of limited dimensions. Surpose a charged spherical body: it does not matter whether this be solid or hollow, for lines of force cannot in any case penetrate the surface of a conductor. Let this be charged: lines of force pass away from it to the very distant boundarics of the field of force. Now surround this with a concentric shell: as in Fig. 272, we prolnce an imner and an outer fiell of force. Now lestroy the outer field : we then lave only an inner field, ammar

Fig. 274. on cross-section. The Capacity of this inner field, or of the conjoint system of concentric spheres, is greater than that of cither of the spleres taken alone : and the underlying reason of this is that we are dealing with a more limited field of force, in which there must be larger charges before we can get mp equal differences of potential (Fig .274).

This kind of apparatus is to some extent realised in the Leyden jar. In this instrument we have a glass jar lined intermally and externally (not quite to the tops) witl tinfoil. Inside there is a chain, or some other means of causing metallic commmication between the inner tinfoil and a metallic knob situatel above the cork which closes the top of the jar. The inner tinfoil may be charged by contact of the kiol) with a
 protures a fleld of forco which rextrals through the glass Lo the ondor limbinl and hayond it exterindy after the lashion

 of the later, destroying the exterion part of the fiek by connecting the outore tindoil with the varth; and wo theot have left simply that limiter field of force which lies between the two tintoils. Tn this limited liold of foree fle chectrice stresses are not though air but through glass. If we chatro a deyalen jan will a friven quantily of electricity, the poterntal athaned is smatl ; hat if we charore it to a griven putcotialdifference, as we may do if we commect it with the terminals of a porefind grivanic hathery or alrictional madhine, tho ynantity of charge which it will take un is relatively great, because the electrostatio capacity of the limited lied is high.

When a contenser has to be discharted, a pair of discharging tongs may be used. This is a motal rod terminated by brass knobs and supported lyy an insulating hamble

Fig. 275. of glass. One of the knolss is latid on one of the coatings and the other knol is bronght into metallis communication will the other : the fiehd of foree is thas clischarged, with the production of a spark. This spark, though apparently instantaneous, in reality consists of a vast number of electric oscillations which follow one another with waning vigutu. The rate of oscillation depents on the size of the jar and on the resistance oflered by the wire which commects the opposed plates; but the frequency may be stated, with a pint Leylen jar and a pair of discharginer tongs, to be abont two million per second. 'lhis violent oscillatory shattering produces a peenliar eflect on any part of the human body through which a Leyden jar may be atecilentally or of set purpose diseharged. 'This discharge nay occur when the knob is touched, for then the amm, the body, the earth and the table, play the part of the discharging tongs and the discharging current passes through them. To prevent accident of this kind it is advisable always to apply the diseharging tongs to the outer coating first, and then to the knob.

Leyden jars may be arranged in batteries, and there are two main ways of cloing this. 'The first is to conneet all the inner eoatings and all the outer coatings respectively: this virtually makes one great Leyden jar of increased surface and correspondingly increased capacity. The seeond is to connect the outer eoating of the first with the inner of the next and so on; the inner eoating of the flrst is charged; the intuetive effeet rans down the series of jars, and the Potential of the

Whole battery is the difierence betwen the protential of the first inmer coating and that of the last outer coating ; but the arlountage is that a given potential-diberence is distributed amenge a great number of jars, so that no one jum has its erass subjectem to too erreat a mechanical steres across the diekl of force, and the risk of spoiling a jar by perforation of tho ghass is obviated.

The capacity of a condenser is equal to $12.5 \times$ (shluface \div distance lotween the phates). In air $\mathrm{K}=1$; and threfore the capacity of a llat condenser consisting of two opposed plates, each of area sits 100 sol. cuns, at a mutual ilistance of $\frac{1}{1}$ cmo, wonld be $1 \frac{1}{s i n} \times 100 \div \frac{1}{1}=31.831$; and to bring its pates to a poten-tial-dilfernce of 1 ('....S. unit (or 300 Volts), $31-831 \mathrm{C} .(\mathrm{C} . \mathrm{S}$. units of charge woulal be requirch. But if other substances than air intervene between the opposed plates, K has other values; if a slab of sulphur were interposed between the plates instead of air, then instearl of 31.831 mits being the quantity required for this purpose, the quantity necessary would be 3×2 times $31 \cdot 831$, that is, $101 \cdot 86$ mits. The letter F° in the formula has for sulpliur a value equal to $3 \cdot 2$; and this is what is called the speciflc inductive capacity of sulphur. Other substances give us different numbers ; so that eich substance has its own Specific Inductive Capacity ; and for convenience that of air is taken as a standard of comparison, and is said to have a value $=1$. In the higher study of Electricity, this property of each substance is of considerable importance; but it is not proposed to follow up its consideration in this phace; let it sntlice to say that the particnlar inductive capacity which Air happens to have plays a prat in determining the value of the Forces in the field, and inleed the value of all numerical data thonghout the facts of Elcetricity : and that all our statements apply, unless otherwise stated, only to the case where air is the medium in the Field of Force.

Production of Difference of Potentlal

What the electrician sets himself to do when he means to produce a Current of electricity, or to produce the phenomenon of the Electrostatic Field, is really to produce Dillerence of Potential. Such difference of potential may be protuced in many ways: but we can hardly explain the real mature of any one of the methods. We shall
howerar und stale the principhos of the methuts cmplayed, matler the fillowing hatels:
I. Rlectrification liy contact of non-metals.

1I. Electrification by contact of metits.
11). (ialvanio-rell methorls.
IV. 'I'Iermo-eleetric methouls.
V. Dynamo-Elcetric Machints.

V1. Friction of water against stean or air.
VII. Evapmation.

TIII. Pressure.
LN. Heating.
X. Electro-capillarity.
XI. Electrification by Flames.

NII. Plysiological Currents.
Of these the first five are the most important.

1. Contact of Non-Metals.-IIow it comus to le that a piece of glass laid in contact with a piece of resin becones positively charged while the resin becomes negatively charged remains at present wholly unexplained; what the relation ul the glass, the resin and the intervening Ether, or the relation between either the glass or the resin aut the surrounding Ether before contact may be, we do not know. We must be content in the meantime to accept it as a fact that there is a Diflerence of Electric Condition between the glass and the resin : and we infer that there is a Stress across the Ether. Different substances act differently in respect of the degree of electrification set up : and in the following series the substances first named become positive to those following them, negative to those preceding them, when brought into contact: C'at and Bearskin-Flamel-Ivory - Feathers-Rock CrystalFlint Glass-Cotton-Linen-Canvas-White Silk-Lhe Hand-Wood-Shellac-the Metals (Fe, Chr, Brass, Sn, Ag, Pt)—Sulphur-Soapstone. Mere contact however proluces a very small effect, for the points of contact are always in reality very few ; and friction
increases the difect by multiplying the points of contact. Hence the one substance is in pratice always rubbed on the of here : and one of the most consenient means of producing a smatl charge of high potential is to rnb sealingwat (shellac) with dry hamel, and then to use the seal-ing-wax as a houly charged with negative electricity. The potential is high becanse the charge is confined to the points which have actually been in contact; and there is no dillision of the charge, ant consennent lowering of the original potential, by any spreading of the charge over the surfate.

Metals (il (luly insulatel) may be elarged in the same way; but the potential is less, for not only is the charge, which is generated at the prints of contact, spread over a larser area by conduction along the surface, but the metal conlucts back electricity so as to procluce partial discharges during the process of rubbing. Again, a difference of potential is developer not only between surfaces of different substances but also between surfaces of the same substance in dissimilar conditions: so that the production of Electricity and the transformation of Electrical Energy into Heat is prohatly a phenomenou of constant occurrence in every case of Friction.

A stick of sealing-wax rubbed with flamel serves as a means of producing small charges: but the same result may be more conveniently attained on a larger scale by the continnous working of a "frictional electric machine."

In this a glass or vulcanite dise or cylinder is continuously rotated on an arle, ant rubs against a silk rubber or rubbers. The glass or vulcanite rubbeil becomes positively and the silk rubbers lecome negatively charged. The charge of the silk rublers is allowed to escape to carth through a metallic chain: and in order to facilitate this escape the conductivity of the silk rubbers is improved by anointing them with a mixture of fat and metallic mereury. The positive charge camot be taken directly ofl the rotating glass or vuleanite, for its surface is non-conducting ; and an ingenious device is resorted to in order to get round this dilliculty. A comb-like scries of sharp points of metal almost touches the dise or cylinder as it rotates: the ends of the points, near the rotating lise or cylinder, become negatively charged by induction, white the back of the comb
herome prsitively chargel ; wr mher, it would hecome posiLively whaten were it not fin the fies that this back of the metallie comb is itself metallically commeted with some oljuet whim is to the charem loy the machime, so that it is this ofject
 This ofiget may be either a large ceylimer of metal or ofse a shell of metal survoming the workine parts of the machine, in whely hater case the back of the comb is made to commanicate with its interion ; or it may lee the imes coat of a Leyden jar, or the inner coat of one of the jars of a battery of Leyden jars.

Whan the object charged is a plain metal or metal-coated cylinder or metallic shell, it is called a "conductor"; a name which is more or less apt to lad to confusion.

If this conductor he eomnected by suctal with the chain from the rubler, a Continuous Curent of electricity, of very small current-strength, will pass in the connecting metal: but if the rubber be conneted with a metallic lall and his ball be brouglat near the eonductor, a torrent of sparks will pass through the gap between the two. If a Leyden jar or battery be used instead of a plain conductor, the sparks will be longer.
II. Contact of Metals.- When two metals, say copper and zinc, are brought into contact, they become electrified. The copper becomes negatively and the zinc positively charged. The student must not suppose that this statement in any way contradicts the former one that in a Calvanic Cell the terminal connected with the copper is the positive terminal, for we shall presently see how the one statement is connected with the other. Copper is therefore said to be electro-negative to zine: and for each surrounding medium it is possible to arrange the metals in a series ruming from the most electro-positive to the most electro-negative. As the surrounding media vary, the order of the terms in such a series may also vary; which shows that the phenomenon depends in some way upon chemical action between the metals and the gas or lifuid in which they lie. The modern explanation of what happens is the following. Copper surrounded by air is always negative to the air; zinc surrounded by air is also negative to the air, but more so than copper is, by about $\frac{3}{4}$ Tolt.

When the coppere in browht into contact with the zint, their potentials become equalised: hut the dile in the inmediate meishbondmond of lise rine and that in the
 potentials, so that across that air there is a field of force between the two metals. The ail in the ne irghbombood of the \%ine is pusitive to that in the neightornhoud of the copper: Now separate the zinc and the copren: there remanis a Fiold of Furee across the ail betwern the separated pieces of metal : and this we express by saying dhat the aine is positively and the copper nowatively charesed.

The Fick of Electric Force in the air is maintained, througle the air being a dielectric or Non-Conductur.

The result will be precisely the same il the two metals, insteul of being put in direct contiact, are connected by a metallic wire or rod ; and it does not matter of what metal the wire is made, nor even whether the connecting wire or rod is made up of one or of more metals: the Field of Force is that between the two terminal metals, even thonfyly local fields of force may have been sct np between the dillerent metals which make up the connecting wite.

Suppose that the air was a conductor ; it would be impossible to naintain such a Field of Force in it, and the whole system would revert to its original condition, in whicle each metal stood at its own potential ancl the air was all at the same potential.
III. Galvanic Cells. - Next, instead of air let us use a conducting liquid, such as dilute sulpluric acid. The copper is again negative, say by x volts: the zinc is ayain negative, ly about $(x+1)$ Volt: the acid is all at the same potential. Now connect the copper and the zinc by a wire: the copper and the zinc come to the same potential and a Field of Force is formed in the acid, as formerly in the air, but with a potential-alifference across it of abont one Volt. Unly for an instant, however : the Field of Force is
broken down and a bricf current passes, the Encrey of which is originally deriveal from the energy of a trifing amonent of solntion of the sinc. 'This current runs weross the Pielil of Poree in the direction Zine to Copper: Jut the l"ield of forrec is instantly restored at the expense of the enesgy of a further amount of combination of the ziuc, ant it is ats promptly discharged. The field of foree thus being set uf and broken down, the Energy of combination of the zinc with the salt-malicle of the acid to form sulplate of ainc becomes liberated as the enorgy of a Continuous Electric Discharge through the liguid from the zinc to the colper, with an acconpmang current along the wire in the direction copper to zinc.

Polarisation,- In action, a one-fluid Cialvanic C'ell is subject to a gradual decay of the current produced by it, due to the following cause. The current takes positively-charged hydrogen-atoms towards the copper plate ; these positively-charged atoms ought at once to coalesce and form bubbles, giving up their positive charges to the service of the general circuit ; but they do not do this promptly; up to a certain limit tley fail to agrolomerate, they retain their charges, they linger in a clarged condition about the copper plate, and they tend to repel the approach of other positively-charged hydrogen-atoms. They thus obstruct the current: they diminish its strength. Various devices have been adopted to get rid of this effect, which is called Polarisation; the means adopted are either to get rid of the hydrogen mechanically, as by rubbing or blowing it off or by making it deposit upon a very much roughened plate instead of a fine one (as in Smee's cell, in which platinised silver is employed), and thus to induce it the more readily to agglomerate into bubbles; or to get rid of it chemically, as by the device adopted in Damiell's and Grove's or Bunsen's cell, already described.

In the former of these the hydrogen is got rid of by being
made to do work on a solution of sulphate of copper and to rebluce it to sulphurie acid and metallic eopper, which is deposited on the ropper of the erth. 'The demosit of this metallie copper instead of hydrogen upon the copper plate presents no disulvantages, and there is no loss of power in the eell hy reason of any Polarisation. In Grove's or l'unsen's the hyduron is dissolved by nitrie acid, with formation of nitrie peroxide or nitrons aed: the prolucts are, however, corrosive forsonous fumes.

Two-fluid cells are nsmally preferable for medieal work ; for in one-flnid cells the deory in the emment, due to Polarisation, is apt to be very tronblesome.

In Remak's moditication of the Diniell eell, for molical purposes, with constant current, the eopper forms a losette at the botton and is surmoudel by a solution of conper sulphate, with erystals of the same: then a porous bowl is inverted over it, anl is covered with paper pulp which supports the zine. The zine is corered with water merely: but when the eireuit is closed the sulphuric acid ditluses through the porous bowl and paper pulp, and attacks the zinc.

A simple effect of Polarisation is well marked in electrolysis. The separated components, or Lons, of the material electrolysed are themselves charged; and as they accumulate on their respective electrodes they repel the next-coming particles of their own kind, because they are similarly" electrified. They do this up to a certain limit; and if we attempt to electrolyse an electrolyte under too small a Voltage, the result is that we simply load the electrodes with these charged ions; and these bring the Electrolytic Conduction to a stand-still. Before the electrolytic conduction can go on, the oncoming ions must be propelled towards the electrodes with a force suflicient to overcome this repulsion ; and therefore the current cannot continue to pass unless the voltage across the Electrolyte exceed a certain limit. The voltage of a single Daniell cell is not sufficient to cause the electrolysis of acidulated water ; that of a Grove cell is.

If now the electrolysing current be stopped, there is a tendency for these accumulated ions to disperse, and to form a reverse current in the electrolyte and round
thr cirent. 'This rirmmstance has beren ntilised in the sororallal Storage Cells, on'seromlary' (ctlls.
 Lhe Temancy to Poharisation, thonsh their structure'spongey hant), an (wan to favom Hue (stahlishment if secondary reactions which momer the werenters different instemb of similas
 of redmend land, on of red leant, on a mixture of lithame red leal and leal sulphate, pateked into a framework or grating of land ;

 completely redneses the lead oxile to metallic lead, while on the other hand the positive ehectrode becomms oxidised as far as pussible, to peroxide of lead, or Mo. When the chavging current ceascs, the peroxide of lead acts like the copper in an ordinary cell, and the clean lead phate acts like the zinc: a discharging current passes round the circuit from the flore, 10 the Pb in the comecting wire, and from the Pl, to the $\mathrm{P}^{\prime},()$ in the dihnte sulphmic acid. At the same time the lhone ant the Phare resjectively reduced and oxidised to 1100 which, in the presence of the suluhnric arid, becones $\mathrm{l}_{\mathrm{l}}^{\mathrm{l}} \mathrm{SO}_{4}$ on both phates. When a charging current. is agrin sent through, this again becomes llbo., free sulphmic acid, and Ply respectively: Such a Storage or Sccondary Cell is very useful, for it onay be connected with an ordinary Galvanic Ceil or

Fig. 2 . 6. battery as in Fig. 276 ; then if the charging cmrent be not too strong, it will go on charging the secondary cell until the continually increasing tendency to a backcurrent through the charging battery liecomes equal to the tendency of the charging battery to pass a current throngh the secondary cell ; at which period, and whereafter, there is equilibrime. If the current be stronger than is necessary for this, the storage battery when fully charged goes on bubbling or "boiling" by mere ordinary electrolysis. In the arrangement of Fig. 276, the tendency of the secondary cell is to reduce the current unti] it has itself become fully charged, but after that it does not interfere with the main current. On the other hamd, if the battery CuZn flag or be withdrawn, the secondary cell will go on producing a current in the original direction romd the working circuit. Such a cell or a battery of such cells therefore serves as a steadier of the current coming from a source (snch as a dynamo) the flow from which is not ruite steady; and in that way a Secondary Cell or Battory plays a part analogous to tiat of a

Aly whed in medianism. Further, when such a stomage oell on battery is charged, it can be carried about with its cirrolit, open ; and then, whenerer its circuit is closed, it will give a coment which may he utilised for the incamtesemee of an electric lamp, or an electrice cantery or knife or catery. wire. A secombary cell shomb newe low fully discharged : and it camot to overediarged. For if the attemp be mate to over harge it, it "boils," crolving elentrolytionygen and hydrogen. If at coll loe dischared, its voltage shandel not be allowed to fall below 1 .90 Volto, ank then it.s Eiftieleney will he from 65 to 70 per cent: that is, from 65 to 70 per cont of the Energy of change will be recoreren ; but it is not safe to allow the rate of discharge to exced about one Ampre per square decimetre of plates. for there is a tentency, if there be too little hesistance in cirenit, for the phates to break up and crumble. With these precantions, a lithanole battery (eompressed peroxide of lead) will give ont, after being charged, ahout 5 Ampere-hours per Ib. of material, at from $2 \frac{1}{2}$ down to $2 \cdot 1$ Volts per cell.

If wetry to find the resistance of a galvanic cell or an electrolysable liquid or of the human body by the means suitable for ordinary conductors we fall into confusion; for Polarisation complicates the results. If however we put a known lesistance in AB (Fig. 247), and the unknow in BC: and a Telephone, not a galvanometer, at G : and if we comect with A a single wire leading from the secontary eoil of an ordinary medical induction-eoil: then, if we slide the wire at D back-aul-fore until there is no sound heard in the telephone, the ratio of Resistances given at Fir. 247 then applies. The angle C has nothing connceted with it.

Arrangement of Galvanic Cells. - When we have a number of cells of any lind at our command, we may in the use of them have either of two objects in view : to work them as economically as possible, or to get the greatest possible current-strength or Ampereage.

In order to work them as economically as possille we must keep down the Resistance of the battery. This is effected by joining all the cells "in surface," all the zincs to one another and all the coppers to one another.

Suppose we lave an extemal Resistance of 10 Oluns, and that we have at disposal say 60 Grove cells, in each of which the resistance is 0.6 Ohm and the Yoltage say 1.8 Volts. Joining all the patinums together and all the zincs to one another, we form a virtual single cell of sixty-fold surface: and the Resist-
anmer of this is onte-sixtieth of the resistance of a single cell ; that, is, it is 0.01 Ohnm. lint mothing has happencel to altor the voltan', which rumains at 1 '8 Valt, just as if a single (inome mell hat simply brent fitted up, of enomonos siz'. 'The (hament

 as one harge cell. The Ohnms are 0 (0) intermal and 10 extmath,

 $=(0.1798)^{2} \times 10 \cdot 01=3 \cdot 2367$, Joules per secome ; whereof $88 \% 1$, an insignificant proportion, is wasted by transformation into lleat in the battery itself. The carent prondaced is small for such a battery, but such as it is, it is noarly all apmlied in the eirenit, while harlly any is wasted in the battery itself.

To get the greatest possible Strength of Curent we should so arrange our cells as to make the intemal resistance of the whole battery as nearly as possible equal to the resistance of the working circuit, from terminal to terminal.

When eells are arranged tandem-fashion, in Indian file, or "in series," the zine of each cell being comnecter with, the copper of the next, the Resistance of the lattery is, il there are n cells, equal to n times the resistance of a single cell, for the same current has to traverse all the cells in succession.

When we have $a b$ cells (say 60 cells) arranged in a groups (say 12 gromps) of b cells cach (say of 5 cells each), with the b cells of eaeh group arranged in surface and the a groups connected in series, the Resistance of the battery is a/b times that of a single cell. The possible groupings of 60 cells wonld be $a=60, \measuredangle=1$ (arrangement in Series) ; $t=30, b=2 ; 20,3 ; 15,4 ; 12,5$; 10,$6 ; 6,10 ; 5,12 ; 4,15 ; 3,20 ; 2,30$; and 1,60 (arrangement in Surface). The relative Resistances are $60 / \mathrm{I}=60 ; 30 / 2$
 $\frac{5}{1} \frac{1}{2}: \frac{4}{15} ; \frac{3}{20}$; $\frac{1}{15}$; and $\frac{1}{80}$ times the resistance of a single cell. With cells of 0.6 Ohm resistance each, the Resistances of the whole Battery, in Ohms, would be $36,9,4,2 \frac{1}{4}, 1 \cdot 44,1 \cdot 0,0 \cdot 36$, $0 \cdot 25,0 \cdot 16,0.09,0.04$, and 0.01 . Of these the nearest to our external resistance of 10 Ohms is the sccond; 30 groups of two cells each, the groups in series and the two cells in each group arranged in surface.

Then what is the current produced by this arrangement? The Amperes $=$ Volts \div Ohms. The Volts are 54 ; because all the 30 groups in series back one another up ; and $30 \times 1 \cdot 8=54$. The Ohms are 19; 10 external and 9 internal. Therefore the

Ampures are $5!=2 \cdot 81$. The total energy transformmel in the
 $=153 \cdot 10^{\circ}$ doules per seeond ; and of this $!!$ is wasted in the battery, by transformation into Heat.

If the External Resistance be greater than that which can be offered by the battery even though all its cells be gronped in series, the best we ean do is to group all our cells in series. 11° with our battery of 60 celles, of 0 ' 6 Ohm resistance eath, we hat to send a curvent thengh a resistance ol 100 Ohnist, we would arrange all onn cells in Series, thereby making the resistance ol the battery equal to 36 Ohns ; and the data would be, Volts $108(=60 \times 1 \cdot 8) ;$ Ohms $36+100=136$; Ampn"es $\frac{1045}{18}=0 \cdot 794$; Enerery $(0 \cdot 79 \cdot 1)^{2} \times 130^{2}=63 \cdot 062$ Joules per seconl, whereof $\frac{8}{13}$ is Wasteil as Ileat in the battery.

We may want to send a determinate current though a given Resistance. For cxample we may want to send an actual steruly current ol 30 millianperes ($\frac{80}{0} 0$ Ampere) through some part of the human boty, say the arm. We may have an idea that the resistance of the arm is likely to be greater than the intermal resistance ol our battery, even when all our cells are arranger in series ; and accorlingly, on the limes of what has just heen said, we may determine to put all our cells in series. If our apparatus be such as will cuable us to switch each cell independently into the eirenit, we onght not to begin with the full battery power, for we might by chance do misclicf: we shonld put cells successively in circuit, in series with one another, until we obtain the strength of cument required, as shown by our milliammeter. If we do not get the required current with the whole ol the cells in series, we shall not get it at all with our battery, which is insufficient for the purpose. If we get it before we have introlucel all our cells into cirenit, we let matter's rest as they are, for with a large external resistance the arrangement in series is already the most cconomical, and the limited number of cells in series has proved itself sufficient.

Another methoul would be to adjust the current as a preliminary, through a resistance-box having a resistance somewhat greater than the expected value of the resistance of the arm. When the current through the resistance-box is the required $\frac{30}{100}$ Ampere, put the arm in the cirenit, so that the eurvent goes through both arm and resistance-box. By this the chrrent will be materially reduced : but the resistances in the lesistauce-box may be gradually removed by operating successive plugs until the current again comes to its adjusterl value. The plugs which have been put in or taken out, as the case may be, then indicate the total Resistance of the arm introducel into the circuit, which does not remain constant. Care
 resistancerenil out of eitenit at first ; it will be well to work up Io the desimed emment-strength more tentatively, and to replame suceressive grouns of smatler eoils ench lyy one larger one.

It may be notad that as a matuer of contse, wherever instearl of kecping lown the power of the battery itself we put resistances into a cirmit in order to moderate the strongth of the enrrent, there is a waste of energy through production of heat in the resistances so put into the circuit, and a correspondines waste of zine in the hattery. This is manifest when an eleetros incandescent lamp is nserl as a liesistance; the Jight amb Heat produced are gencrated at the expense of the Encregy of the electric cument.
IV. Thermoelectric methods,-Let bismuth, Bi, and antimony, Sb, be connected (Fig. 277)

Fig. 277. at the two junctions H and C. Let onc of these iwo junctions, IH, be heater ; let the other, C, remain cool; a current will pass round the circuit, BiHSbCBi, in the direction bismuth to antimony across the hotter junction H. This current is very feelsle, but the effect may be multiplied loy inereasing the number of hotter and cooler junctions in the circuit, after the fashion of Fig. 278.

The slightest difference between the temperature of HHHH and that of CCC causes a very small current to pass. But since it is very easy

Fig. 27S. to retect very small currents, it is very easy to detect very small differences between the temperatures of HHHH and CCC .

This principle is applicd in the Thermoclectric Pile or Thermopile, in which the alternating junctions HH are very numerous and are gathered together into a facetted face which is exposed, say, to radiation, or to direct heating from any particular source. The circuit is completed round a delicate galvanometcr, or throngl any other current-measuring contrivance.

Another application of the prineiple of the Thermopile is the thermoelectric thermometer sketched in Fig. 279, and used,
for example, for finding the temperature of tho sulsoil at dillerent points. The two wires $W W$ connect two hismuth-antimmy junctions 0 and 11 : if these be at the same temperature, there is no current in the circuit. If, howerer, the junction It beeome warmer than C , a current rums in the direetion $\mathrm{Bi} / \mathrm{SB}$, and romed the galvanometer (i .

Fing 20. The temperature of HI may be ascertained either from the readings of the galvanometer, with the aid of a calculated or ohserved table of corresponding temperaturedifferences, kept for refirence: or else by altering the temperature of C until the instrument G indicates no current; C and H are then at the same temperature. Then the temperature of C may readily be ascertained by means of a thermoneter, and therefore that of H is also ascertained. In thermoelectric needles we have the principle of the Thermoelectric Thermometer applicd to apparatus which may be nsed to explore the temperatures of the human body. Thermoelectrie thermometers are far more sensitive to small differences of temperature than morenry thermometers arc. They can indicate the rise of temperature which occurs when the brain is active.

Thermoelectric Piles are also used as sources of current, though not mueli so; but where they are used they are very convenient, for they require no preparation beyond lighting the gas, which, by bunsen-burner flames, keeps the junetions HHHH hot. In Giilcher's thermopiles, the metallic junctions H and C are betweon tubes of argentan (a nickel alloy) and hollow cylinders of a hard antimony alloy: the Resistance, with 66 clements, is from 0.5 to 0.65 Ohm, the Voltage is 4 Volts, and the Amperes consequently about $6 . t$ as a maxinum ; the consumpit of gas is about 170 litres (6 cubic feet) per hour' ; and the Efficiency, that is, the proportion of the energy of combustion of the gas which is converted into the energy of electric current, is about 1.04 per cent as a maximum. In other forms of thermoelectric pile, the maximum efficiency does not usually exceed 0.35 per cent. Considered as a form of apparatus for conversion of oue form of Energy into another, the thermopile is therefore very wasteful ; but it is cleanly and convenient, and its waste is that of a sufficiently cheap form of fuel, while the flame can be turned on and off without any trouble.
V. Energy of Rotation.-The means by which Differences of Potential are produced by dynamoelectric machines or "dynamos" will be described later on (p. 458).

Other Methods．－＇The other methonts of provering dilliereners of potential may be brictly disenssed，since they are of companatively small paratical use．

V1．When a jet of partly－mulansed steam on of sumfanly－ expanding umbried air is driven through at comical nozald of motal or eflass on wood，the strean of air beeomes positively，the vessel from which it is driven becomes negatively charged．If the nozale be of ivory there is no elagge．If the vessel contain some turpentine oil，the charges are reversed．These fuets were discovered by acrident at Messrs．Armstrong＇s works at New－ eastle，and very powerful electrie machines lave been made to rephace the frictional machines used for high－tension discharges． A lipuid in the spheroidal stato（see jr．127）is generally fomet to lee electrifierl．

VII．In the tranquil evaporation of water，there does not seem to be any electrifieation set up；but if there le any friction of the vapour against the liquil or，in the case of solutions，if there be any friction of the erystals mpn the vessel or uplon the hot solution，or any crackling of the crystals，there will be a dillerence of electric eondition between the valour and the liquid evaporated．If such a diflerence be set up in the evaporation of water，the steam is generally positively eharged．

VIII．When pressure or traction is applied to tourmaline erystals along the erystallographie axis they become diflerently eliarged at the opposite ends of this axis．

IX．Similar results follow when sueh erystals are heated or cooled．

K．When mercury oscillates under water in a conical tube，so that its upper surface goes on ehanging in its area，the eleetric condition of that surface between the mereury and the water unlergoes corresponding alterations，and

Fig． 230. there are differenees of potential or altered differ－ ences of potential set up between the mereury and the water．This prineiple is applied in a form of microphone due to Lippmann，in which vibra－ tions of a membrane A eause eorresponding vibra－ tions of the surface of the merenry at B：above B lies acidulated water．Into the mereury and the aeid respectively there are wires inserted which form part of an eleetrie eireuit；and in that eireuit a current runs，which Huctuates in strength in aecordance with the vibrations of the nembrane A ．

XI．Flames may sometimes be used as means of producing differenees of potential，as in the case of a gas－flame whieh gives
the smmombing air a megative charge, while the combustion of glowing carton gives it a positive chatre

Xll. Electric curcentes are also fomal to mist, matmally, in living nerves and muscles. They are wakened during contrantion of the muscle on the andive siate of the nerve. Becyurel fomed that an alkaline and and acid thin, selarated by an animal membane, developed is current which rant, in at comberting wire, from the alkali to the acid. He was inclined to attribute the natural currents of nerves and museles to this.
XIII. Some animals lave distinct electricily-gmenating oraths. The electric torpedo (Raja torpedo) has it lourlobed apmatus equivalent to a battery of 2000 phates. The dorsal region ol the lish is positive, the ventral negative : and the fish ean, if irritated, keep an electric ineandescent lamp aglow: The evolution of Energy in this form is said to cool the lish itself distinctly.

The Variable Period

The various phenomena of Electric Current of which we have hitherto spoken are those of a chrrent when it has once been fairly set up and is in a steady or uniform condition. We lave now to mention certain phenomena of the period during which a current is being set up, or being varied in its strength from one value to another.

This period, which is called the Variable Period, is a period of adjustment throughout the whole Magnetic field; and during this period the Ether in the Field seems to be gathering up or giving out Energy. When a current is being set 111 , there is a certain retardation or holding-back of the current, which does not at once reach the distant end of the circuit in full strength, but takes some time to attain a given proportion of its full ultimate ralue. For this reason signals on a long line, such as the Atlantic cable, take some time in reaching the other end ; not that any appreciable time is taken in producing some effect at the other end, but that the current remains too small to lie perceived by any but a most delicate instrument at the distant station ; and the more delicate the recording instruments, the more rapidly
may the arrival of the signil－currents be detected and the signals remb all．When the cument is sumdenly stopped at the bume emb after having attancal a Steraly State，the cessation of the enrent at the distant encl is aynin deplomate and retarded．

During the Variable Perion the Ficlel is，as las been satil，in at state of adjustment．One result of this is，that if in the field there be any wire in which it current can flow，in that wire a current will flow，so long as the variable state of the Field endures，lut no longer．The field may be bronght into this distumerl state by two methods，which are，after all，esscntially the same，namely， （l）the production of a new current or the cessation or diminution of an existing current，or（2）the approach or strengthening or the recession or weakening of a magnet．

Both these methods involve in reality only one alternative，that is，the strengthening or weakening of the surrounding Magnetic Field．The direction of the Current which is induced in a wire in the fied is suchl in both cases as to satisfy only one criterion，namely，that the existence of the new Current tends to prevent the change which is going on in the condition of the Field．

Let the student look at any ordinary medical in－ duction coil．He will there find that a bobbin，wound round with a coil of insulated wire，is slipped over another bobbin also wound round with insulated wire， and that this inner bobbin may or may not have，but usually has，a soft iron core，generally of soft iron wire． Now let a current be passed through the inner coil， and be kept steady by tying the oscillating hammer up so that it cannot approach the soft iron core；then the Magnetic Field in the interior of the imer coil aequires a certain strength ；but should the current increase，then the interion field will become stronger．Nextly，if we may imagine that while the inner current had been increasing，and the interior field accordingly becoming stronger，there had been at the same time an opposite
curent developed by any means in the outer coil, the ellect of that outer current would have been to wakern the interiur fied, and thas to nentratise, of tend to nentralise, the held-strengthening eflect of the increase of curvent in the immer coil. This is exactly what hirpens. There is spontancousty dereloped in the onter' woil, during the period of increase of the eurrent in the innere cuil, and no longer, a curvent whose direction is opposed to that of the increasing current in the inmer coil ; and this inhaced current tends to thwart the fied-strengthening effect of the increasing primary current.

On the other hand, if the current in the inner coil fall off, there is again a Current in the unter coil, which is on this occasion in the same direction as the waning current in the inner coil ; and this induced current in the outer cuil again lasts only during the period of the waning of the primary current. Currents so induced in the outer coil are called Secondary Currents, in relation to the waxing or waning curvent in the immer coil, which is, in relation to them, called the Primary Current; and correspondingly, the imer coil is called the primary coil and the unter one the secondary coil.

From this we may understand that even in the simplest case, that of two circuits laid side by side, as in Fig. 281, when a current is abruptly made in the primary circuit P by pressing down the key K so as to make contact there and close the circuit, a Secondary Current of extremely brief duration and opposed in direction is formed in the secondary circuit S ; and if we look only at

Fis. 281. the parts of the respective wires which lie alongside one another in the neighbourhood of the arrows in the figure, we may say that the setting up of a current in one wire is accompanied by a very brief current in an opposite direction in another wire laid alongside the former. When the current wanes or is abruptly stopped,
 direction ats the waning or hroken empent.

It is tor he remarked that, the Secembary ('monent is limited in
 Itow, which is detomimed ly the relative prouertions and position of the twon eireuits : and if the serontary Coill he one of high resistance ank many turns, the voltage of the secondary coil will be high, so as to get the cament throngh in the time. Therefore it a seematary cirenid, in which inere is a secondary coil whose turns of wire are muncons in comparison with those of the primary enit, he hroken ly an air-ghle, sparks may leap across that air-gap, across a distance which the pimary cument conld not lave leaped over; and further, as the break or stopnage of a current is more abrupt hau its establishment uron the closure of the circuit, the secondary circuit may present sparks across such a gap at the break of the primary current, oven when the sane circuit dues not pesent any such sparks at the making of that current.

A magnet swing in a copper box soon eomes to rest ; by its motion it produces induced currents in the copper ; and these induced curents are sueh as to ofler Resistanee to the motion which gives rise to them. By this means the oscillations of a galvanometer-necdle may be ehecked or danped, so that the instrument becomes aperiodic or "deal-beat."

In the "Induction coil," the primary coil, the inner one, is made of a few turns of thick insulated wire; the secondary, the onter one, is made of many turns of thin insulated wire. Each coil has its own pair of terminal binding serews ; the primary is connected with the battery (say a single bichromate cell) and with some contrivance for making and breaking the circnit; the secondary is connected with whatever we may wish to pass the secondary currents through. When the primary current is made, there is an abrupt current of high roltage in the secondary circuit; when it is broken there is another current, in the opposite clirection (that is, in the same clirection as the broken primary current), still more abrupt and of still higher voltage.

Instead of using a key to make and break the eurrent in the primary circuit, we may use a "contact-breaker" to make and break the current with great frequency. This may be
a mechanical contrivance, such as a cos-wheed will tooth prested upon by a metal spring interpolated in the primary cirenit and rotated hy hand ; or it may ho antomatic, as in Neef's Hanmer: ln thin the soft-iron 'ore within the primary bobhin, beeming powerfully marnetie when the enment passes, athets a pree of solt iron prosed near its end, which pinece of soft iron forms an integral part of the primary eirent ; this gitece of sot iron moves towards tho sofitiron core; but in so doms, the morable piee of soft fron moves away from a metallie serew, contact with which is necossaly to tho eontinuity of the primary cirenit. 'The contimaty of the primary cireuit is thus hoken, and tho primary current sudemen stops.

If the contact be mate and hoken in vacuo, the action is very abupt. If the contact he mald and broken by lifting a wise up and down at the surface of mereury, it is advisable to cover the mereury with water, in order to prevent sparks.

IVhen the primary current ceases on being thus broken, the soft-irom core loses its magnetic properties; it then ceases to attract the solt-iron mass; this soft-inon mass is fetched back to its original position by a spring ; and then the contimity of the eircuit is lestored, again to be broken in consempence of the action of the current itself as before. This cycle is repeated with great frepmeney, which may be modified by adjusting the distance which the soft-iron mass or armature has to travel hack-and-fore, or hy atjusting the tension of the spuing which tends to keep it pressed against the contact-serew.

In the Secondary Coil we then have an alternating succession of abrupt currents of ligh voltage, in opposite directions; and a rapid succession of alternating abrupt or intermittent currents of this kind is called, in medical work, a Faradic current, as distinguished from a steady or Galvanic current.

The Strengtly of the inducel Faradic Current may be regulated ly sliding the secondary coil more or less completely over the primary.

If the construction of the instrument be reversed, that is, if the primary coil, still iuside, be one of many turns and the onter sccondary coil be of fow turns, the sccondary currents are of lower voltage and greater Strength than the primary; ancl this is the prineipte of the Transformer used in clectric lighting work. In the use of transfomers, the primary cmrents employel are not abruptly made and broken, but oscillate back-and-fore, their variations of current-strength corresponding very eloscly to the vibrations of a string. Such currents
may aremedingly be sad to present nuthing lat the Varialle D'rion, and ats they oscillate back-and-fine, a Semomitary C'urrent, of law voltage and greater phatity, ascillaters fore-and-
 Voltare, supplied fonn "altermaning curront" ebectric mains, are lhus "transtorned" into uscillating "uremts of more manageable and sater voltare, for use within dwellings and other luildings.

A Primary Cirait may even act to some extent ass its own Scomdary Circuit. 'Jhis phenomenon is known as Self-Induction. If we try to pass a curvent abruptly through a coil (for example the primary coil of an indnction coil), the different turns act on one another, and each turn of the coil tends to induce an opposed current in the other turns, during the Variable Periorl. 'The result of this is a certain Resistance to the setting up' of a current in a coil. Conversely, when the current is broken, there is a corresponding resistance to its stoppage, so that the current, as it were, plunges on and piles up an electric charge at the extrenities of the wire ; and if the coil be large enough, there may thus be frolucel a high Voltage, with corresponding sparking, at the ends of the broken wire. There is no case in which this phenomenon of Self-Induction is entirely absent, even in a single-loop circuit; lut practically we must, in order to encounter it, have either a very large simple circuit, such as a deep-sea cable line, or a circuit containing a coil of many turns.

In Von Helmholtz's arrangement of Neef's lammer, for physiological purposes, the current is never completely cut oll, so that the effect of self-induction is minimisel, and the slock at the break is the same as that at the make.

Dynamo-Electric Machines.-We have already said that when a Maguetic Field is strengthened or weakened, a coil in that field has a Current inducel in it. But there may be cases in which while the Field itself remains unchanged, it may in effect be rendered weaker or stronger relatively to the coil. Take three posi-
tions of the coil in the fiek．Th Fig． 282 a the coil stands fiaing all the fied lines，or Lines of Magnetic Forere， end on，and the greatest possible number of these pass through it：relatively to the coil，there－ fore，the Fichl is then at its strongest． In Fig． 282 b ，the number ol limes which traverse the coil is smaller than in Fig． 28.2 A ，and relatively to the coil the Field

Fig．ニッ゙っ。 is weaker．Next take the position of Fig． 282 （．Thore the coil is at right angles to its former position and no fied lines pass throngh it at all；relatively to the coil， the Magnetic Field is then as though it were not．Now hat us make the coil rotate，romnd its own diameter，from positiou A through position 13 to position C．During this moventent the Field is gradually weakening relatively to the coil ；and drring that period an induced current passes in the wire of the coil．Next，will the current be uniform，or not，during the guarter－revolution shown？We can see that in the position A ，an exceed－ ingly snall displacement produces no effect upon the Number of Lines which pass through the contour of the coil．Therefore，if the coil be subject to continuons rotation，there is no current at the instant when the coil is passing through position A．When，on the other hand，it is passing through position \mathbf{C} ，the change in the Number of Lines is the most rapid possible：the Lines of Force are then being cut（and left outside the coil）not obliruuely but directly across．When the coil is passing through the position C ，the induced current is therefore a maximum．If the course of events be followed during the next quarter－revolution，it will be found that the current still continues in the same direc－ tion round the loop but with waning current－strength， until the coil assumes a position the same as that of A in Fig．282，but with this difference，that the back of the coil is now where its face had been．When this angular position is reached，the current has fallen back
to zero．In fhe hatferembtion，then，the current－ shenglth has risen fonn Zaro do a Maximan and fatlen batek lo Zero．We maty mperesent this，if the rotation be miform，ly a thagran，like 283．＇This

N゙よ 2 2 3. ＂urve，when worked ont in detail，is of exactly the sume form in the harmonic curve which indieates the suceessive ris－ placements of any given point of a vibrat－ ing string during one half－oseillation．
During the next half－revolution，the result is pre－ cisely similar，with the exceptim that the back of the loop now takes the phace of its former front．The induced eurrent now runs round the back of the coil in the same direction as it lat run round its front in the first half－revolution，waxing and waning in the same way．It will be seen on taking a coin in the hand and passing the finger round its rim in a given direction； and then turning the coin face－over and again passing the flnger round the rime in the same direction；that the movement of the finger in the latter case is really，as regards the rim of the coin，opposite in its direction to the movement of the finger in the former case．In a similar way，the two current－directions during the two lalf－revolutions，which are the same in relation to the Field，are in reality opposed in reference to the Coil considerel alone，because between the two half－ revolutions the coil has reversed the aspect presented by it to the field，Along any given bit of the wire of the coil，then，the current is，starting from the position A， first in one direction waxing and waning，then passing through a zero valne，and then waxing and waning but in an opposite direction．The whole cycle of variation of current－strength may be represented by the diagram，

Fig． 281. Fig．284，which is the same as one complete wave－length of a harmonic curve．Each complete cycle is called one Alternation．

The coil, as we have sem, rotates on an axle: and we max loring out the cmats of the wires to metal rimgs fittom on the axle. While the coil is rotating on its axle, bet us tunch these two ringe with the two emis of a metal wite ; then that wime will form, along with the rotating coil, a complete circuit. In that circuit a ('urrent will pass, which current will oscillate or alternate in its direction

Fis. es. of flow, waxing and waning at each half-alternation, after the fashion of Fiy. 28t. One complete alternation corresponds to each revolution of the coil: inn the more mpidly the coil is rotated, the more rapilly will the alternations follow one another.

There are numerms possible variations in the application of this pinciple. For example, the coil may not rotate round its own diameter, hut round some other axis of rotation parallel to that diameter; the consenuences are similar, one complete altermation, that is one positive and one negative flow of current, to each complete revolution.

Again, we may not lesire to have our resultant current an alternating one: in which case we use a Commutator, insteal of the plain rings of Fig. 285. A Commutator in its simplest form (Fig. 286) is made of two lall-rings ranged opposite to one

Fig. ${ }^{286}$. another and mounted on a wooden or otherwise isolating portion of the axle. One of these plates is permanently comected with the one, and the other with the other end of the coil-wire. The external circuit has its free ends (Hat flexible plates or "brushes") so arrangel as each to touch one of these half-rings : and as the axle rotates, at the instant the direction of the current changes in the coil, the brishes exchange the half-rings upon which they rest, so that the Direction of the Current in the external circuit remains always the same. But the current in the external circuit

Fig. 2sí. fluctuates in strength: it varies after the fashion shown in Fig. 287. Therefore a simple coil with a simple commutator is not a satisfactory contrivance for practical purposes in the production of a direct current. Great ingenuity has accordingly been expended in the development
of the modern dynamo mathent, in which many loops on turns on eoils of wire are afforesterl into a rotating congeries called Hhe: Almaturo: lut the artion of each soveral turn of the wise in the Armatme is in principle the same as that of the simplo loop just described : ant by means of a morw complex commontaler the different loops or coils, or gromps of these, in the armature are mate to deliver theis several cuments to the oxternal cirenit in such a way that these overlap one another and thms get rid, apmoximately, of the finctuations of emmentstrength. It will be obvions, therefore, that the armatnre of a dynamo has to be diflerently designed according as it is intended to be used for moducing Altermating Curents or for laving these commutated into a Direct Current; aud that it will have to be differently constrmeted aceording to the Voltage and Ampreage which will be required as the ontput of the machine.

We have assumed in the above that a Magnetic Fick cxists for the loop or coil to rotate in, and that this magnetic freld is uniform. If it be not uniform, the current-strength does not vary precisely after the fashion of a vibrating string ; but the curve still bears a general though distorted resemblance to the harmonic curve.

In the earliest machines actuated by the rotation of coils within Magnetic Fields, permanent steel magnets were used to produce the rerguired field.

The permanent steel magnet survives in the medical mag-neto-electric machine. In this the required weakening or strengthening of the Field, relatively to the coil, is aceomphisher not by rotating the coil round a fixed axis in the way just deseribed, but by bodily moving bobbins, bearing eoils, from stronger to weaker parts of the field and vice versa. These bobbins, a pair of them, are made to rotate so as to flash past the poles of a permanent steel magnet, and are thus pulled in and ont of the strongest parts of the field : eurrents are thus formed in them, whieh may or may not be direeted by a Commutator so as to make them travel in the same direction. The Strength of the Field itself may be regulated in the way already deseribed (p. 415), by an adjustable bar of soft iron.

Then again, the required Magnetic Field was, in many forms of machine of this kind, that between the Poles of soft-iron electromagnets excited by a separate current from an inlependent machine or battery. But the

Greal stride in advance which rendered these machines practical was the discovery of the "dynamo-electric principle." This is, that the current from the machine itself maty be made to excite the electromagnets, and thus to keep up the rerguired Magnetie Field.

The stinting-point is, that if the electronaguets be not of too soft a sample of irom, they always retan a trace of mandetio condition, evell when the exciting emrent eases. There is therefore a Magnetic Field. True it is an exceedingly feeble one, but it generates a certain very feeble current when the machine is set to work. If the current produced be led round the electromagnets, this current strengthens the electromagnets: these in their turn give rise to a stronger Magnetic Field and to the induction of a more powerful Current: and this train of action and reaction is repeated mentil the strengths of the electromagnets, of the magnetic fields, and of the induced currents attain the maximum possible under the existing conditions. Tarious modifications of this principle have been alopted, such as sending a part only of the current round the electromaguets, sending a part at all times and the whole of the current only when the external eirenit is active, adjusting the relation of the parts of the current so sent, and so forth: but these are details whieh we now pass over.

Some dymanos whieh deliver alternating currents are driven at extreme speal: others use a device analogous to that of the medical magneto-electric machine, and flash a series of coils past a number of alternately positive and negative electromagnet poles ranged in a circle.

Electromotors.- When a Dynamo Machine is reversed in its action, that is when a Current is sent through a dynamo instead of its sending out a current, the dynamo tends to rotate backwards, and to transform the Energy of a Current sent throngh it into the Energy of Rotation ; but this would make it run against its brushes. If, however, the brushes be set backwards, any ordinary dynamo will serve as a more or less efficient Electromotor, driven by the current supplied to it. When an electromotor is put into the circuit of a dynamo, and allowed to run, it may be that the actual current perceptible along the two wires which comect the dynamo with the motor is greatly reduced; for the
motor itself acts, whon rmmanys, as dynamo, fnd it produres it lowkwarl or Reverse Current which temps to nentalise the original current of the dymamo.

By Ehectromotors an extreme speed of rotation ean be producel, as for instance in dentists' apparatus and in the hypnotic fascinator.

The law for the 'lumsmission of Bnergy by direet cmroents is the same as that for the probnction of lleat in a conductor, namely : Jomles per semont $=$ the Amperes x the Volts consumed in the motor: and it will be remombered that one Jonle per secont corresponds to an Activity of $7 \frac{1}{\text { fon }}$ lorse-power: so that a carrent of 5 Amperes, if the terminals of the ruming motor are at potentials differing by 200 Volts, corresponds tu an absorption of Energy in the motor of 1000 Joules per secont, or a 'flransmission of Energy from the driving dynans at the late of $\frac{10 n 0}{8+5}$ horsc-power.

Alfervating Currents

The successive alternations of the induced current delivered by an altemating-current dynamo follow one another with a frequency ranging from about 40 to about 150 per second. This order of frequency is very different from that of the oscillations in a Leyden jar discharge, which rum from say 1 to 10 millions per second or more: but even with the currents from an alternating-current dynamo, there are certain peculiarities to be observed which are common to alternating currents of all except the lowest frequencies. The higher the rate of alternation, the more does the current tend to be confined merely to the outer skin of the conducting wire, that is to say to the Electric Field, the Ether itself; and heuce tubes convey such currents as well as rods do.

It has long been considered in medical practice that Faradic currents were minch more superficial in their action than continuols eurrents.

The Apparent Resistance of a wire to an Alternating Current is therefore something very different from its

Resistance to astemly Coment. ; mut it fonds, an the frofuency inereases, to adenire a value proportional not inversely to the erosissection of the wine, but invorsely proportional to its circumference. This resistance is called the Impedance of the comductur ; and it is not constant like the liesistance, hut varies according to the Way the wire is coiled up, and acording to the fiepueney of the alternations.

Alternating curents prolnce Heat, which is proportiomal to the "remefr value of the squmer of their' 'urvent Strengtli ; and they can proluce Light, as in are and incandescent electric lamps: hont in are-lighting they have a tembency to produce noise in the lamp. Being not properly directed to that effect, they can not prodnce any electrolytic eflect, because what they do at one hall' alternation, they undo at the next.

A coil throngh which an alternating current is passel acts in in non-uniform magnetic field not like a magnet, but like a Diamagnet; it is repelled into the weakest part of the fiekl, :and tends to lie across the fiekd-lines.

When an alternating current is passcal into a coil of many turns, there is a tendency for it to choke down so that no current passes; for the Impedance, or aplarent resistance, then becomes very great.

If an object be hung by one wire upon a wirc bearing an alternating-cnrrent, that olject becomes, with corresponding rapidity, alternately positively and negatively electrostatically charged : and this may result in such a shattering of the outer molecules of the olject itself, and of the adjacent particles of the air, that the surface of the object and the air around it become heated or may glow brightly. This eflect is very easily produced with the air remaining within a teisslen-tube; and if a Geissler-tube be held in one hand while the other hand is comected with one of the terminals of the secondary coil of an Induction Coil (in which the primary current is itself subjected to alternations of extreme frequency, as where a Leyden-jar is put in the circuit of that primary current and is made to discharge itself continuonsly), the Geissler-tule glows in the hand. The clarging and opposite charging of the Geissler-tube must be effected through the human body, and alternating currents must run through the body with

 this order are momeronts amblared, and are due to Mr. Nicola 'Tinsta.

In the Telephone ambilice sommls, the JImman Voice, ote., are reprodnced at a dishance by means of electricity. The somnd to he reproducerl has its mechanical equivalent in the air-Waves which give rise to the sensation of sount. J'hese air-watves are complex-harmonic vibrations of the air, and they will exert a correspondingly varying Pressure upon any men-

Fing. 288. brane or dise exposed to them. In the simplest form of Telephone, to which we confine our attention, they are cansed to impinge upon, and thus to exert varying pressure upon a soft-iron dise A. This dise yields more or less to the fluctuating pressure. In sonte cases this dise is only the central part of a more yielding membrane. The next part of the apparatus is simply a coil-bearing bobluin l , with a magnet M serving it as a core. The complexharmonic movement of the soft-iron dise A in the neighbourhool of the magnet M causes a corresponding disturbance of the Magnetic Field of M ; and the consequence of this is a corresponding complex-harmonically alternating induced current in the wire wound romnd the bobbin B. The original variations in the airpressure on the soft-iron dise are thus reproduced in the Oscillations of Electric Current in the bobloin. The wires of the bobbin are connected by long-distance wires with a similar instrument at the receiving station. The oscillating currents, as received at the receiving station by the bobbin B^{\prime}, canse variations in the Strength of the magnetic field of the second magnet II^{\prime}. These variations cause corresponding variations in the Force with which the receiving soft-iron dise A^{\prime} is pulled upon.

The reveiving sult-iton dise yichts to these varying formes int ant oscillating mamer, ant catses oscillatory variations in the pressure of the air at the sutface of the thace. These variations are propatated though the air to the listening Eat, and the original somm is hearel reproduces.

Not perfertly, however. Apart allogether liom the distortions in the ascillating signals cansed by so many transmissions from one part of the arparatus to another, there are distortions of the signals cansed by the nature of alternating currents and their prealianties of thansinssion along wires. The higher components, those of steater frequency, are not framsmitted at the same speed as the lower components, and they tend to thin away and wear ont more rapilly than the lower ones; so that the quality of the somd, as transmitted, is changed.

In the microphone, a Steady Current is male to pass through a carbon rod supported loosely between two hollowed-out carbon blocks, or through a quantity of loose carbon dust: vibration causes variations in the contacts through which the current can be conveyed and a corresponding variation in the conductance of the circuit. A steady Current is thereby made a slightly varying current, and its variations will be detected by the receiving Telephone.

A microphone mounted on a stethoscope may be made to record heart-sounds, through generating a currcnt which acts upon a muscle-nerve preparation.

In the photophone a mirror, itsclf flexible, reflects light to a distant point: the back of the mirror is spoken at ; it vibrates, and the light reflected to the distant point undergoes corresponding fluctuations in brightness as the mirror becomes flatter or more concare. At the distant point the light, thus varying, falls upon crystalline selenium. Curiously, the conductivity of selenium varies in accordance with the brightness of the Light falling upon it. This selenium forms part of a circnit in which a current runs, and in which a Telephone is inserted. As in the case of the Microphone, the variations of conduclance of the circuit arc rentered manifest in the reeeiving telephone by the reproduction of the original Sound in that instrument.

MACMILLAN AND CO.'S BOOKS FOR STUDENTS OF MEDICINE.

A sisten of medictate By Many Writers. Mated by

 Matimus soo. [Whorly.
derormilites and Their surgical trantarnt. by - 1. II. TYerbs.

IIn the l'ters.

 University of Aberdeen. Yol. I., 2ls. met. ; Yol. II., Parts 1 , and 11. Netimus 8vo 15s, met each part.
A TENT-BOOK OF PIIARMACOLOGY, THERAPEUTI'S's, and matelid medica. By T. Lauder Brunton, M. D., D.Ne., F.R.s. Thinal Elition, contaning the alditions, 1591 , to the British Pharmacopuria. Svo. 21s. In two wols., 22s., birl. Supplement separately. 1s.
ON DISORDERS OF DIGESTION, THEIR CONSEQUENCES and treatment. By the same Author. Svo. 10s. Gul.

Tables of Materla Medica. A Companion to the Materio Metlira Musenm. By the same Author. New and Enlurged Elition. Deny svo. is.
PHARMACOLOGY AND TIERAPEUTICS, or Medicine Past and Present. By the same Author: C'rown 8ro. 6s.
AN INTRODUCTION TO MODERN THERAPEUTICS ; being the Croonian Lectures on the Relationship between Chemieal Structme and Physiologieal Artion, iflivered bufore the Rogal College of Physieians in Loulton, June 18s?. By the same Author. Svo. Cloth. Bs. fil, net.

A TEAT-BOOR OF GENERAL THERAPEUTICS. Being an arcount of Climate, Diet, Massage, Eleetricity, Ifymotism, Baths, Venesection, ete, By W. Hale White, M.D., F. B.C.P. Illustrated. Crown svo. 8s. Grl.
THE CLIMATES AND BATHS OF GREAT BRITAIN. Being a Report of a Committer of the Royal Medieal and Chirurgical Sociely of Lendon, W. M. Ord, M.D., Chaiman; A. E. Garrod, M.D., Hon, Stec. Volmme I. The Climates of the South of Englanl and the Chief Mmieimal sturings of Great Britain. Svo. 21.s. net.
MACMILLAN AND (O: LTRD, LONDON.

MACMILLAN AND CO.'S BOOKS FOR STUDENTS OF MEDICINE.

 svo. T~~ $11+\mathrm{L}$.
(AISES AND TREATMENT OF LATERAL (UJRVATURE

 By Il. Camberin Ghbibs, M. I). Svo lis. met.

 Svo. 3s. iti.

 ele. Cromis swo. 7s. fill met.
TEXT-BOOK OF PATIIOLOGIGAL ANATOMY ANP PATIIO.

 [2s. (inl.
METHODS OF PATHOLOGICAL IIISTOLOGY. By (. VIS Kamben. Thanshatel and pelited hy II. Morlem Fhercher, M. A., M. Ib.
 to Zieglere's Pathological Anatomy. Sve. 6s.
A TREATLSE ON THE LIGATION OF THE GREAT abteries in chntinulty. By charibs A ballance, m. B., M.S.
 Lllustratell lig io Plates and 232 Figures. Ruyal svo. Ios, net.
pharmacograpila: A History of the Principal Druges of Vegetahk: Origin met with in Great Britain and latia. By F. A. H'Lutiderer, M.D., ami D. Manbury, F.R.s. Speond Elition. Mamimu sio. 21 s.
LRSsONS ON PRESGRIPTIONS AND THE ART OF PREscirlbing. By W. Ih. Griffiths, PlıD., L.R.C.P.E. New Elition. adapted to the Pharmacipesia, iss5. Pott suo. 3s. Git.
THE PRACTITIONER'S HANDBOOK OF TREATMENT; " The Pringhles of Therapeurics. By J. Minene Fotimergle, M. in., late Plysician to the Virtoria Park Hospital. Thime Elitian. Svo, Jen.
THE ANTAGONISM OF TILERAPEUTLC AGENTS AND WHAT' THE 'TEAVH Us. By the same Anthor. Crown Sun. dis.
FOOD FOR THE INYALID, TIIE CONYALESCENT, THE DY゙SPEPTIC, AND TILE GOUTY. By the same Anthor. 3s. bin.
diseases of The EyE. By R. B. Caiteh, F.R.C.S. Soo. 16m.

> MAOMILLAN AND CO., LTT., LONDON.

[^0]: * The First Law is the statement that ITeat can be measmed in ergs or in calories, this statennent being usually compled will a delinition of the calorie itself.

[^1]: * By washing the zinc with dilute sulphuric acid (1 in 12); pour half a fluid ounce or so of merenry into the dilnte acil; lower the zine into the mereury and rub the mercury in with a rag. Or make an acin solntion of mercury by putting $\frac{1}{7} 1 \mathrm{lb}$. mercury into $\frac{1}{2} \mathrm{ll}$, nitric and I 1 b . hydrochoric acid; when the mereury is lissolved add $1 \frac{1}{2} \mathrm{lb}$. hylrochloric acil ; immerse the zine in this solution for a few seconds: wash and rut it: it will he found amalgamated.

[^2]: * Bichomate of potash I part by weight, and hot water 18 by weight : allow to cool ; catiously add 2 parts of sulphuric and $\frac{1}{3}$, hart of nitric acid. Use when colul.
 \dagger This solution is kept saturated by means of some contrivanee which surpunds a quantity of sulphate-of-copper erystals in the upper part of the lituuid.

[^3]: * 'Ihis positive elretrorle is caller the "anorle"; the other, the negative, is called the " cathorle."

